自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Debroon

闲下来就写点东西。

  • 博客(684)
  • 资源 (46)
  • 问答 (1)
  • 收藏
  • 关注

原创 多模态融合 + 慢病精准预测

例如,将实时数据处理与多模态数据分析相结合,可以实现更为动态和精准的疾病管理,这在处理慢性病如糖尿病或心血管疾病时尤为重要。接下来,我们将单一模态的临床笔记作为输入到LLMMs中,提取文本特征嵌入,并使用注意力模块将它们融合,用于最终的预测任务。传统的慢性病诊断涉及与医生面对面的咨询以识别疾病。在我们的研究中,我们使用临床笔记和血液测试数据来处理常见的慢性疾病,如糖尿病、心脏病和高血压,进行多模态模型训练。:LLMMs能够处理和理解大规模和复杂的数据集,适用于提取临床文本和实验室数据中的关键特征。

2024-07-02 17:00:51 327

原创 Graph RAG = 知识图谱 + RAG

基于社区的多层次摘要策略。类似于医学综述文章,从概括性的疾病描述到具体的治疗案例详细讲述,Graph RAG通过从不同层次生成摘要,提供从广泛到具体的多维度信息视角。之所以使用多层次的社区摘要生成,是因为不同层次的摘要可以满足从一般到特定的不同查询需求,提供不同深度的信息视角,帮助用户更好地理解复杂的医学问题。这些子解法形成了一种链条的逻辑链,每个子解法都依赖于前一个解法的输出作为其输入,形成一个高效、层次分明的查询和分析流程,类似于医学诊断和研究中的步骤分解和逐级深入的方法。

2024-07-01 09:25:39 823

原创 【24医学顶刊】GANDALF:主动学习 + 图注意力变换器 + 变分自编码器,改善多标签图像分类

假设一家医院希望利用深度学习模型识别和分类患者的胸部X射线图像,特别是能够同时识别多种肺部疾病的共存,如肺炎和肺癌。这种方法使模型能够准确识别并分类图像中的多种疾病,如正确区分并同时识别存在于同一患者图像中的肺炎和肺癌。通过GANDALF方法,该医疗中心的机器学习模型能够更有效地识别和分类胸部X射线图像中的多种疾病。模型不仅学习从单一病变中识别疾病,还能识别多疾病共存的复杂情况,大大提高了诊断的准确性和效率。:GaNDLF旨在通过合成训练数据的方式,提高多标签医学图像分类任务的学习效率和分类性能。

2024-06-28 17:01:21 696

原创 CogMG:用大模型解决知识图谱覆盖不足的问题

解决知识覆盖不完整和知识更新不对齐的问题,以增强大型语言模型(LLM)和知识图谱(KG)的协同能力。知识分解子解法:将查询分解为知识三元组特征:因为可以明确识别和定位查询中所需的具体知识单元之所以用知识分解子解法,是因为这样可以有效地将复杂的查询简化为更易处理的部分有助于发现知识图谱中的知识缺口知识补全子解法:利用LLM参数中的知识补全三元组特征:因为可以利用LLM的广泛知识库来填补知识图谱中的空白之所以用知识补全子解法,是因为LLM可以根据其训练数据生成合理的知识补全。

2024-06-28 08:56:33 830

原创 开源 150 T 数据(2023年之前所有数据)

随后,可能会引入更精细的数据筛选和清洗,以去除噪声和不相关的信息,专注于提高模型在特定任务(如问答、摘要等)上的表现。通过实施这些多级别的训练和评估策略,并不断探索和实施新的训练技术,可以显著提升语言模型的性能和效率。多级别训练和模型评估,以及探索新的训练策略,是大规模语言模型开发中的关键环节。多级别训练指的是在不同的训练阶段使用不同的数据处理、模型架构调整和超参数设置,以逐步优化模型的性能。为了更有效地利用可用的大规模数据,并提高模型的训练效率和最终性能,探索新的训练策略至关重要。

2024-06-27 10:22:49 797

原创 眼底图 + ResNet-50 + 糖尿病视网膜病变分级 + 组件分析

基于这些观察,研究者提出了一种最优的组件组合,该组合在不需要任何专门网络设计的情况下,仅使用图像级标签就在EyePACS测试集(包含42670张眼底图像)上达到了最先进的结果,即卡帕系数为0.8631。这张表探讨了不同数据增强组合对模型性能的影响。这个框架清晰地展示了从训练数据的准备到最终预测的整个流程,强调了每一步中的关键组件,如预处理、训练策略和优化配置等,以及它们如何影响最终的DR分级性能。这些图表提供了全面的视角,显示了不同训练配置对模型性能的具体影响,有助于优化DR分级模型的训练策略。

2024-06-26 16:09:13 836

原创 SelfReg-UNet:解决UNet语义损失,增强特征一致性与减少冗余的优化模型

对应于去除重复的书籍或很少被查看的书籍。通过这种方式,优化后的模型(如SelfReg-UNet)就像是一个被精心整理过的书架,不仅容易找到所需的信息,而且还有效地利用了空间,去除了不必要的元素。:通过将特征图分割为两部分并独立处理,这种方法旨在减少特征冗余,并通过蒸馏技术从浅层特征向深层特征传递有价值的信息,促进模型学习更为精确和有用的特征表示。这两种方法都是针对UNet架构中存在的特征冗余和监督不对称问题提出的解决方案,旨在通过改进特征处理和优化信息流,提高模型对医学图像的分割精度和效率。

2024-06-25 15:12:55 1034

原创 Diffusion Mamba:用于CT到MRI转换的Mamba扩散模型

CT成像在成本效益和速度方面表现优异,尤其适用于骨骼和钙化组织,但在软组织的成像上存在限制,而MRI则提供了更高清晰度的软组织图像,但成本和时间上的需求较高。这张图展示了视觉嵌入器(Vision Embedder)的框架,这是用于处理CT图像数据的神经网络架构,旨在生成图像嵌入和软掩膜,以供进一步的图像处理和分析使用。这个图形展示了DiffMa模型在处理医学图像,尤其是MRI图像时的复杂性和多层次处理结构,突出了在模型中使用的先进技术,如螺旋扫描和条件化的多层感知机。

2024-06-25 14:19:25 1054

原创 Mamba-YOLO:Mamba 主干网络适合处理更复杂的数据和场景 + Apache-2.0 开源可商用

在Mamba YOLO的架构中,核心组件如SS2D结构、ODSSBlock、Local Spatial Block (LS Block)、和Residual Gated Block (RG Block)与高级组成部分如ODMamba Backbone、Simple Stem、ODSSBlocks、Vision Clue Merge、PAFPN和Head之间存在直接的层级和功能关系。通常,Head会设置不同尺度的检测层,以处理从小到大的各种对象,确保模型可以广泛地适应不同的目标尺寸和场景。

2024-06-20 09:35:25 858

原创 用大模型增强知识图谱 —— 上下文解析、关键词识别、口语化输出能力

在收到用户消息的时候,需要先做一步总结归纳,归纳出用户的真实问题。比如说历史对话中提到感冒,后面用户问吃什么药好得快?上下文问题:感冒了 + 吃什么药好得快?这一步主要为后面的实体识别铺路的,一是去掉无关信息,二是把一些指代词,还原成真实的实体。请结合以下历史对话信息,和用户消息,总结出一个简洁的用户消息。直接给出总结好的消息,不需要其他信息,注意适当补全句子中的主语等信息。如果和历史对话消息没有关联,直接输出用户原始消息。历史对话:用户消息:{query}总结后的用户消息:'''

2024-06-19 09:40:45 372

原创 多模态融合算法分析

在模型的输入阶段就开始融合不同来源的数据,通常通过直接结合不同模态的特征向量来进行。

2024-06-18 16:33:46 677

原创 YOLOX: 无锚点机制 + 解耦头部设计 + 动态标签分配策略的高性能目标检测器 + Apache-2.0 开源可商用

当将DarkNet53的深度特征提取能力与CSPNet的高效计算方式结合时,CSPDarkNet53能够在确保深度和复杂特征提取的同时,保持网络的运行效率。这种先进的策略通过确保使用最相关的预测进行训练,优化了地面真实和预测对象之间的匹配,提高了精度。这种结构优化的目标是在不牺牲性能的情况下提供更高的速度和效率,使得CSPDarkNet53成为计算资源受限环境中的理想选择。这种设计的变化主要是为了改善模型的性能,通过分离任务以减少不同任务间的干扰,提高模型在分类和定位准确性上的效率。

2024-06-14 17:31:18 976

原创 男人圣经 14

这里最反人性的就是 精细化 + 循环改错,这个过程需要高强度用脑(非常难受,想逃避)、习惯枯燥、有耐心(不贪不急)。第二,无论是工作还是学习,总要面对新东西,甚至需要作出复杂判断,面对不确定性无所适从,是苦;今天被高中生,属实把我震惊了,怎么强成这样,我要变强,反思我弱原因,是因为大脑在追求轻松。人生与家国是同样的道理,对于个人如此,对于家庭如此,对于国家更是如此。第一,积极主动的思维本身就需要能量,当能量不足-疲劳的时候,是苦;第三,就是练习过程中反复重复同样过程的枯燥,枯燥也是苦。

2024-06-14 15:46:47 810 9

原创 MindMap:大模型结合知识图谱,提供透明的推理路径

总体而言,MindMap通过创新性地融合知识图谱和大型语言模型,克服了单纯依赖LLM处理复杂查询时的多种限制,为用户提供了更精确、可靠、透明和解释性强的解决方案。MindMap 通过结合知识图谱提供实时知识更新和透明的推理路径,相比传统LLM在处理复杂查询时显著提升了准确性、透明度和解释能力。在此步骤中,我们使用推理图(Gpath m和Gnei m)提示LLM生成最终输出。在此阶段,LLM需要将不同的证据子图(Gq)整合为一个统一的推理图(Gm)。步骤三:LLM在思维图上的推理。

2024-06-12 15:53:52 751

原创 NeMo Guardrails 大模型安全防护:这个框架牛逼,不会像强化学习 指令对齐限制灵活性死板回答,也不会像提示词约束容易被遗忘和清理

论文:https://arxiv.org/pdf/2310.10501代码:https://github.com/NVIDIA/NeMo-Guardrails除了准确性,可控性和可靠性是将 LLM 部署到生产环境中的关键因素,特别是医疗行业。使这些模型能够在多轮对话中保持主题相关性对于开发面向任务的对话系统至关重要。这是一个严峻的挑战,因为LLM很容易偏离主题。同时,LLM也倾向于生成事实上不正确或完全虚构的回答(幻觉)。此外,大模型还容易受到提示注入(或越狱)攻击的影响,恶意行为者通过操纵输入来诱使模型产

2024-06-07 17:30:52 1174 1

原创 DENet:融合全局与局部,多模块策略,超越传统分割方法,提升青光眼筛查精度

这里使用ResNet-50作为主干模型,直接学习整个视网膜图像的全局表示,包括5个下采样块,接着是全局最大池化层和全连接(FC)层,用于青光眼筛查。此外,深度学习技术已被引入用于分割视网膜图像,如使用多标签深度网络联合分割光学盘和杯,然后计算CDR以验证青光眼检测,但这些方法过于依赖分割的准确性。这种转换用于更好地分析视盘区域,通过将圆形的视盘区域拉伸成矩形形式,从而能更有效地处理检测与青光眼相关的视盘和杯状区域的形状和结构变化。同时,该网络的另一个分支输出初步的青光眼分类结果。

2024-06-07 14:25:18 640

原创 LW-DETR:实时目标检测的Transformer, Apache-2.0 开源可商用,论文实验超 YOLOv8

这个可以比喻为你有一个名单(编码器),上面记录了所有宾客的特征。:窗口注意力专注于图像的局部区域以减少计算负担,而全局注意力覆盖整个图像,确保广泛的环境因素被考虑,两者交替使用以优化性能。:这就像你在与多个宾客交谈时,能够根据对话中的重要信息(如他们提到的名字或他们提到的其他宾客)来迅速调整你的注意力焦点。每种大小的检测器都有其特定的配置,比如不同层数的编码器和不同数量的对象查询(用于确定图像中的对象)。:投影器是连接编码器和解码器的桥梁,它处理由编码器生成的特征图,为解码器提供必要的输入信息。

2024-06-06 13:04:45 1307

原创 眼底照 + OCT图 + 精神状态 ,预测阿尔兹海默症

例如,在眼底图像分析中,不同模型可能对不同类型的图像特征(如血管结构、黄斑区的细节等)有不同的敏感性,通过模型集成,可以综合这些特征的识别能力,提高诊断的准确性和鲁棒性。需要每位参与者的眼底照片(双眼的视盘中心和黄斑中心)清晰可见,OCT图像(双眼的中心凹水平截面)层次分明且可以分析,以及迷你精神状态检查(MMSE)的数据。为了提高模型的鲁棒性和适用性,训练集故意包括了患有眼病的患者的视网膜图像,因为AMD和青光眼等与年龄相关的眼病在50岁以上的个体中很常见。训练用于分类眼底和OCT图像的CNN模型。

2024-06-05 14:13:45 646

原创 实现开源可商用的 ChatPDF & RAG:密集向量检索(R)+上下文学习(AG)

方案4:词嵌入模型没有经过微调,比如我的数据都是医学的,使用的 embedding 模型 没有经过医学微调,很多名词、概念把握不清,只能捕捉到一些通用的医学术语和语法结构。方案2:通用 RAG 在文本分块的时候,通常只是粗暴的把 pdf 划分为 1500 块,很多关联的上下文被迫分隔。实现 RAG 步骤有很多步,涉及的知识点也很多,直接上开源项目,不用深入理解里面每个知识点,能用就行。方案1:不同领域下,通用 RAG 方案效果也不好,一般需要按场景定制优化的。方案5:如果涉及大量文档,使用。

2024-06-04 15:48:52 962

原创 男人圣经 13

但是这个命运,你20岁的时候是看不出来的。行业基因是,不计较小目标的成败,没有节点式的职业规划,没有具体目标,不计回报,长时间地去发展这么一个系统,看到任何事情都能和自己的产品联系在一起。但平庸就如同地心引力,是一种自动地、自然地把你往下拖的力量 ---- 只要你活在小我中,就会把天赋埋没在平庸的日常之中。如果你不是浪费了那么多的时间,做错了那么多的选择,没有为了成功付出过足够的时间和代价,你怎么会一直没钱呢?你做的每一件事,都是在训练自己的信念 —— 好好选择你做的事,不要降低你的标准,不然你会很虚弱。

2024-05-31 12:07:49 927 2

原创 RET-CLIP:眼科疾病诊断大模型

RET-CLIP 是在一个包含 193,865 名患者的数据集上专门训练的,用于提取彩色眼底照片(CFP)的一般特征,并采用三方优化策略,重点关注左眼、右眼和患者水平,以反映真实世界的临床场景。实验证明,RET-CLIP 在糖尿病视网膜病变、青光眼、多种疾病诊断和多种疾病的多标签分类等四个关键诊断类别的八个不同数据集上的表现优于现有基准,这证明了我们的基础模型的性能和通用性。这些子解法共同构成了RET-CLIP的整体解决策略,每一步的设计都针对其最终目的—提高眼科疾病图像诊断的准确性和模型的泛化能力。

2024-05-29 15:54:01 810

原创 糖尿病视网膜病变分级新方法:卷积网络做分割和诊断 + 大模型生成详细的测试和治疗建议

除了Kaggle数据集,我们还整合了其他较小的数据集,包括印度糖尿病视网膜病变图像数据集(IDRiD)(Sahasrabuddhe和Meriaudeau,2018),我们使用了其中的413张眼底照片,以及MESSIDOR(视网膜眼科学领域的分割和索引技术评估方法)(Decencière等人,2014)数据集,贡献了1,200张眼底照片。为了评估与糖尿病视网膜病变(DR)相关的病变分割技术的有效性,提供了针对不同异常的二值掩码,包括微动脉瘤(MA)、硬性渗出物(EX)、出血(HE)和软性渗出物(SE)。

2024-05-29 14:32:07 968

原创 一眼诊全身项目经验

使用SAM病灶组织分割模型,细致分割眼底图片中的关键信息,如血管、视杯盘及关键病灶,如出血、渗出、棉絮斑等,有效提高模型的可解释性,实现从黑盒到白盒的转变。后SAM病灶组织分割模型:开发了SAM模型,通过精细分割眼底图像中的关键标志物和病灶,增强了模型的可解释性,将“黑盒算法白盒化”。尽管现状检测的准确率已较高(90%以上),还能用积累的大量眼底图像队列数据,预测患者未来眼底疾病的发展,实现提前干预。未来我们只要拍摄眼底照片,通过这个人工智能的模型,就可以快速地、自动地把这个十年风险的得分计算出来。

2024-05-27 21:40:07 955

原创 YOLOv10:去掉NMS,全面的效率-准确性设计

双重标签分配策略和一致的匹配度量就像教练在训练中使用不同的训练方法,并在比赛中选择最佳策略,确保球员能够在关键时刻做出最佳决策,同时提高训练效率和比赛表现。双重标签分配策略通过结合一对多和一对一的优点,提高了YOLO模型在交通监控系统中的训练效果和推理效率,使得系统能够在实时性和准确性之间达到更好的平衡。通过一致的匹配度量,双重标签分配策略在训练阶段提供丰富的监督信号,提高了模型的学习效果,并在推理阶段避免了NMS,提高了系统的实时性能。好举一个交通监控系统中的具体例子,说明各个组件在这个过程中做什么。

2024-05-27 17:03:02 2058 1

原创 ResNet + LSTM:同时处理空间和时间信息的数据时(如癫痫)的SOTA算法

这篇论文的主要贡献包括提出了一种预处理方法以增强特征提取,通过预训练图像表示来获得有限数据下的最佳性能,并引入了一种结合了ResNet和LSTM的混合模型,以提取时间序列图像数据的多样特征。EEG数据的预处理步骤:展示了单个通道EEG数据的预处理过程,包括原始EEG数据的转换为频谱图像(使用STFT),并进一步的数据增强技术,如频带截断和临时割除。通过这些阶段的处理,可以有效地从复杂的EEG数据中提取有用的信息,并训练出一个鲁棒的机器学习模型,最终提高癫痫管理和治疗的能力。

2024-05-27 14:30:51 1530

原创 一点点 cv 经验 1:cv方向、pytorch、涨点技巧、长尾分布不均匀数据集、模型评估、输入尺寸、目标检测器设计

假设我们选择了一个简单的YOLO模型,它只有少量的卷积层和池化层,无法很好地捕捉交通标志的复杂形状和背景。在处理机器学习和特别是计算机视觉问题时,输入尺寸的管理是一个重要的方面,因为模型通常要求所有输入数据具有一致的尺寸。通过上述不同的方法,可以有效地管理和处理不同尺寸的输入数据,以满足特定模型的需求或优化模型性能。偏差表示模型的拟合能力,方差表示模型对数据的敏感性,噪声表示数据的不确定性。总的来说,有些模型需要固定的输入尺寸,而有些模型则可以接受不同尺寸的输入。

2024-05-26 19:12:41 1321

原创 tree of thought:从单向决策,到结构化,给予大模型,深思熟虑、推理完备的系统2

目的:ToT框架的主要目的是提供一种结构化和系统化的方法来解决复杂的问题,通过模拟和扩展人类的思维过程来生成、评估和选择最佳解决方案。ToT框架通过维护一颗思维树,其中每个思路都是朝着解决问题的中间步骤,使LM能够通过自我评估中间思路的进展来进行深思熟虑的推理过程。这是最复杂的方法,它不仅生成多个思维步骤,还形成了一个思维树,其中包含多个可能的问题解决路径。这种方法是对思维链方法的扩展,它生成多个独立的思维链,并通过多数投票来决定最终的输出。

2024-05-22 14:21:51 879

原创 男人圣经 12

这个世界需要你凶狠,这个世界需要你给别人的感觉,你是一个特别强大的人,这个世界需要的你像一个工具一样,这都没有问题,你的手段可以极其的凶残,但是你的内心不能和你的手段一样,你的手段不管多么的凶残,你不管多么的想要成功,但是你的心里一定要你内心坚守的那份纯真,那份简单,那份善良,那份对这个世界的那份爱。你不会那样做,你会跟他讲,你会告诉他学习好的未来的好处,不好的好处,但是你不会去违背他,你要让他感受到,你是你做一个妈妈,你是认可她的,你是爱他的,你是你是在心里对他是有充满的充满了喜爱的。

2024-05-19 17:22:13 845 3

原创 Moe 混合多专家模型 原理 + 大模型的有性繁殖 + DIY 自己的 Moe 专家系统

大模型最开始设计思路是 — 通用。一个通才能够处理多个不同的任务,但一群专家能够更高效、更专业地解决多个问题。与一个“通才网络”相比,一组术业有专攻的“专家网络”能够:让用户获得更快的响应速度提供更好的模型性能 — 每个专家模型都能针对不同的数据分布和构建模式进行搭建更好地完成复杂的多种任务在不显著增加计算成本的情况下大幅增加模型容量开发时间更短让一个大模型既代码牛逼,又医疗牛逼,还数学、角色扮演牛逼,你得烧多少算力、买多少数据,即使做到,项目开发周期非常长,搞不好新技术出来又颠覆了。

2024-05-16 10:35:19 1103 2

原创 医学大模型 + 推理完备算法设计

医学大模型的 4 类问题:怎么搞?在尝试不同方案。设置快慢双系统,快系统理解信息,慢系统辅助决策快系统是LLM,微调的医学大模型,功能是自然语义理解和对话、复杂的信息集成和洞察慢系统是临床知识图谱 + 文本向量库,把诊疗规则存在在数据库,功能是医疗决策逻辑问诊时,让慢系统控制快系统进行诊断假设、问询因子,实现临床思维检查时,把检查项目和诊断做关联存储,结合检查证据类型等级,结合风险收益算法,实现个性化诊断时,快慢系统判断结合,病因与临床表现的关系、治疗方法与治疗目标的关系、检查结果与诊断推断的关系、药物治

2024-05-15 16:15:30 1201

原创 IRENE:医学图像、文本、基因数据 + 多模态融合 + 疾病诊断模型

知网:面向深度学习的多模态融合技术研究综述医疗多模态文章:https://m.leiphone.com/category/healthai/CIeOmsPoB1YlP0An.html以前做医学图像分类,就是纯图像做的,现在是融合多个信息源来做,多模态融合了。在临床诊断中,为了做出准确的决策,医生通常需要综合考虑患者的主诉、医学影像和实验室化验结果等多模态信息。目的:开发高效的多模态融合方法,以提高多模态诊断的准确性和效率。解法:多模态融合方法可以分为三类:早期融合、晚期融合和混合融合。如何用算法融合,是前

2024-05-15 09:19:31 1303 2

原创 男人圣经 11

你如果不能进入混沌,对婚姻不要看的太纯洁,女人最大悲哀就是把爱情看的很纯洁,我要找一个纯洁的爱情,这都是,这都是此观念已经让你进入万劫不复的境地,我要找一个好男人,就此观念已经让你废了,我要成功,此观念让你废了,哪有成功呢?一元世界:如快乐、幸福、成功,好,美满,顺利,有钱,善良,正直,优秀,高尚,伟大,真诚等等,基本上那些极致的好听的词儿,比如完美,这些都是一元世界的表达。你追求的如果是这些词儿的话,你的人生不可能快乐,你的人生不可能获得一种解脱,你的人生也不可能有大的成就什么是一元的世界?

2024-05-11 10:09:53 524 10

原创 男人圣经 10

一念进佛道,一念进魔道,进佛道就是不为你自己,进魔道就是为你自己,这就是事物,万事万物的核心本质,这个杯子的存在,因为它承载了水,它给我创造了价值,它能存在,但凡它只为它自己,这个杯子无法存在。大成者都是大乐者,人生大量体验,大量经历磨难,从中不断去享受这个过程,不断让每一天老的自我死去,长出新的自我,最后能够活出一个与万物一体的那个,不是一个独自的我的那个我,你就可以创造无限,显现无限。越往上飘,最后就飘走了,真正的规律是,要想往上整,就越要往下扎,名利往上涨,你这个人的魂儿必须往下扎。

2024-05-09 11:17:52 1786 5

原创 autodl 上 使用 LLaMA-Factory 微调 中文版 llama3

模型路径:/root/autodl-tmp/LLM-Research/Meta-Llama-3-8B-Instruct。adapter开头的就是 LoRA 保存的结果了,后续用于模型推理融合。强烈建议选 4090(24G),不然微调的显存不够。我们用 LoRA 微调,至少得 16G(7B模型)。俩个地方都要改:file_name、本地数据集路径。这个数据,ta会去hf官方找,我们可以设置镜像站。微调后,还可以马上测试微调结果。微调后,就找这个路径看一下。方法二:改成本地文件路径。

2024-05-08 16:36:17 1783 3

原创 pdf2htmlEX:pdf 转 html,医学指南精细化处理第一步

Docker命令本身并不支持在单个命令中处理多文件或使用通配符执行迭代。因此,您需要使用一些shell脚本逻辑来达到这个目的。以下是一个在Linux环境下使用bash脚本处理目录中所有PDF文件的方法。目录中的所有PDF文件,并对每个文件运行。目录中,并且输出的HTML文件将存储在。将上述脚本保存到一个文件中,比如命名为。不用进入容器,直接创建 3 个 文件夹。这种方法假设所有PDF文件都存储在。目录中的每个PDF文件执行。

2024-05-08 09:19:26 672

原创 CRE-LLM:告别复杂特征工程,直接关系抽取

因此,当输入“糖尿病患者因胰岛素不足而经常感到疲劳”这句话时,模型不仅识别出实体和关系,还能直接输出具体的关系:“糖尿病患者”因“胰岛素不足”而“感到疲劳”,显示出胰岛素不足导致了疲劳。例如,对于句子“糖尿病患者需要定期检查血糖”,一个基于PLMs的模型可能会识别出“糖尿病患者”作为实体,并提取出与“糖尿病患者”相关的关系,比如“需要定期检查”等。通过这样的应用,CRE-LLM不仅提高了从医学文本中自动提取关键信息的效率,而且通过精确的关系抽取,支持了更深入的医学研究和更有针对性的治疗决策。

2024-05-02 15:03:50 875 1

原创 自适应医疗决策框架 MDAgents:问题复杂度评估 + 医疗决策 + 多智能体协作

整个决策过程使用复杂的集成技术,如温度集成,并采用多数投票和加权投票等决策策略,确保决策的健壮性,并在适用的情况下反映模型间的自适应医疗决策框架 MDAgents,通过整合问题复杂度评估、医疗决策以及多智能体协作三个关键部分,目的是提升医疗决策的质量和效率。总的来说,MDAgents框架的整合使用提供了一个系统性、层次化和协作性强的解决方案,能够更精确地处理从简单到极端复杂的各种医疗问题,确保医疗决策的效率和效果,最终提升患者的治疗结果和生活质量。:这一步是识别和分类医疗问题的复杂程度。

2024-05-02 11:02:30 37

原创 llamaindex 分成检索 实现 多文档 RAG架构

首先,你需要定义一组文档属性,这些属性能够描述文档的特征、内容或其他相关信息。这些属性可能包括文档的主题、关键字、作者、日期等等。

2024-05-02 09:15:40 1063 1

原创 婚姻情感 21

不管怎么样啊,这是肯定了对方的缺点啊,让对方知道啊,暴露缺点在我这儿啊,是无所谓的,我是愿意去肯定的,当他明白啊 — 他最介意的缺点在我们这儿都变成了优点,那他在我们面前自然就会卸下防备,减少伪装,他在我们这儿啊,就不用去当男神,能够自然的啊,显得轻松自在。故意跟其他的异性很亲密,让男生有危机感,或者故意在公众场合表现自己,让男朋友见识自己的性能力,这些负面的情绪价值,让他吃醋紧张,用在比较闲的学生,小男生上啊,其实没有太大的问题,年轻的女生啊,确实也能用这样的方式获得更多的关注和陪伴啊。

2024-04-30 15:32:19 551 2

原创 RAPTOR:索引树状 RAG,使用树结构来捕捉文本的高级和低级细节

递归摘要作为上下文摘要技术:递归摘要提供了文档的简明视图,使人们能够更专注地参与内容。尽管递归摘要模型对于捕捉更广泛的主题很有效,但可能会忽略细节。LlamaIndex通过类似的方式摘要相邻的文本块,但也保留了中间节点,因此保留了不同级别的细节,保持了细粒度的细节。然而,这两种方法由于依赖邻接来对节点进行分组或摘要,可能仍然会忽略文本内的远程依赖关系,而RAPTOR可以找到并组织这些依赖关系。

2024-04-30 10:47:13 944

blog配套资料、blog配套资料、blog配套资料

blog配套资料blog配套资料blog配套资料blog配套资料blog配套资料blog配套资料

2023-07-14

博客配套资料博客配套资料

博客配套资料博客配套资料博客配套资料

2022-08-06

博客配套博客配套博客配套

博客配套博客配套博客配套博客配套

2022-08-05

博客配套https://download.csdn.net/download/qq_41739364/86339152

https://download.csdn.net/download/qq_41739364/86339152

2022-08-05

配套博客资料,配套博客资料

配套博客资料

2022-08-05

processed_data.xlsx

博客配套数据:https://blog.csdn.net/qq_41739364/article/details/120967416

2021-10-27

original_data.xlsx

博客配套资源:https://blog.csdn.net/qq_41739364/article/details/120967416

2021-10-27

博客配套资源数据集.zip

博客配套资源

2021-10-09

莎士比亚诗歌数据集.txt.zip

博客配套资源

2021-10-08

恐龙名字数据集.txt.zip

博客配套数据集

2021-10-08

我的数据集+我的数据集.zip

博客配套资源

2021-09-07

data.xlsx.zip

博客配套数据

2021-08-21

神经网络识别猫的项目代码

博客程序:https://blog.csdn.net/qq_41739364/article/details/118094724

2021-07-17

疫情监控项目源码.zip

博客配套:https://blog.csdn.net/qq_41739364/article/details/115742139

2021-04-15

label.xlsx ....

label.xlsx ....

2021-03-08

data.xlsx ....

配套博客:https://blog.csdn.net/qq_41739364/article/details/113818246

2021-03-08

smi_sol.dat

化学分子数据

2021-03-08

口罩厂亏损分析的相关数据

配套博客:https://blog.csdn.net/qq_41739364

2021-02-23

breast_cancer.xlsx

配套博客:https://blog.csdn.net/qq_41739364/article/details/113818246

2021-02-21

att_faces.zip

人脸数据集,数据集里有 40 个人,每个都有 10 张照片,分别存储在 40 个文件夹里,s1-s40,每个文件夹下面都有 10 张 .pgm 照片,每张照片的尺寸 112*92(长 * 宽)。

2020-07-04

att_face.zip

人脸测试数据集,配套博客:https://blog.csdn.net/qq_41739364/category_9414685.html

2020-07-03

阶的估计.pdf

配套博客:https://blog.csdn.net/qq_41739364/article/details/86718524

2019-09-03

1.数据挖掘入门.pdf

配套博客:https://blog.csdn.net/qq_41739364/column/info/42524 的 第四章。

2019-08-13

3.机器学习常用算法.pdf

配套博客:https://blog.csdn.net/qq_41739364/column/info/42524 的 第 4 篇。

2019-08-13

强大的防御跨站点请求伪造.pdf

配套博客:https://blog.csdn.net/qq_41739364/article/details/96846943

2019-08-01

dict.txt.zip

配套博客:https://blog.csdn.net/qq_41739364/article/details/96767359

2019-07-23

phpStudy.zip

配套博客:https://blog.csdn.net/qq_41739364/article/details/93403910

2019-07-19

SQL字符型注入漏洞.pdf

配套博客:https://blog.csdn.net/qq_41739364/article/details/94025729

2019-07-18

0day安全:软件漏洞分析技术(第2版)一 PART2.pdf

全书分为俩部分,这是第二部分。 配套博客:https://blog.csdn.net/qq_41739364/article/details/96202158

2019-07-17

0day安全:软件漏洞分析技术(第2版)一 PART1.pdf

全书分为 2 部分,这是第一部,配套博客:https://blog.csdn.net/qq_41739364/article/details/96202158

2019-07-17

burpsuite实战指南.pdf

配套博客:https://blog.csdn.net/qq_41739364/article/details/93862232

2019-07-02

渗透测试实践指南:必知必会的工具与方法.pdf

中文版,配套博客:https://blog.csdn.net/qq_41739364/article/details/93862232

2019-06-28

端口大全介绍(2).doc

很详细,配套博客:https://mp.csdn.net/postedit/93862232

2019-06-27

初等数论大全

计算机数学专题5: 数论配套资料 博客地址:https://mp.csdn.net/postedit/86761357

2019-04-24

C语言RSA素数部分

配套博客:https://blog.csdn.net/qq_41739364/article/details/86775886

2019-04-08

DES加密位操作部分 C语言

配套博客:https://blog.csdn.net/qq_41739364/article/details/86775886

2019-04-07

DES加密代码 C语言

配套博客:https://blog.csdn.net/qq_41739364/article/details/86775886

2019-04-07

RSA加密 C语言实现

配套博客:https://blog.csdn.net/qq_41739364/article/details/86775886

2019-04-07

DES加密代码 java

匹配博客:https://blog.csdn.net/qq_41739364/article/details/86775886

2019-04-07

系统学习 公钥体系

配套博客 https://blog.csdn.net/qq_41739364/article/details/86775886 ,效果最佳。

2019-03-28

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除