自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Debroon

闲下来就写点东西。

  • 博客(751)
  • 资源 (44)
  • 问答 (1)
  • 收藏
  • 关注

原创 执行力怎么培养?

因为你发现,当自己没有能力的时候,当你对这件事比较陌生的时候,如果你前期对这件事的企图心和目的性特别强,总想着把这件事立刻干好,但是你的能力又跟不上,你会非常的痛苦且焦虑,这个时候你做事的积极性就会受挫。而是你要想办法,在你没有任何抵触心理的时候偶尔做一下这个事情,然后慢慢去找做这件事情的乐趣,去调整和规划自己的生活,来方便你做这件事,从而降低你做这件事的阻力,不要有压力,把它当做生活中一件普通的事情。注意,你的焦点要放在练的部位上,感受发力,确保练到位。三、观看励志视频、精神能量,特别是。

2024-09-30 12:05:40 2184 6

原创 KGP:在多文档上创建,文档知识图谱

图中还展示了不同类型的节点(圆形代表段落,三角形代表页面,方形代表表格)以及它们之间的关系(绿色箭头表示结构关系,黑色双向箭头表示内容相似性或关键词共享)。答案生成 = 相关信息整合(因为需要汇总检索到的信息) + LLM推理(因为需要根据整合的信息得出答案) + 答案优化(因为需要确保答案的准确性和可读性)这种方法结合了结构化知识(知识图谱)和非结构化推理(LLM),以有效处理不同类型的问题,并在多文档环境中进行智能的上下文检索。在LLM指导的图遍历中,存在一个隐性的特征:上下文感知能力。

2024-09-26 10:44:51 705

原创 知识图谱检索 Graph-Based Retriever:文本块到结构化数据的转换,解决语义检索捕获不了的长尾关系

例如:在分析"阿司匹林"和"心脏病"的关系时,不仅考虑直接的治疗关系,还会考虑通过"抗凝血"、"血小板抑制"等中间概念的间接关系,同时还会考虑相关研究的影响力和时效性。这种方法的创新之处在于它结合了结构化的知识表示(知识图谱)和传统的文本检索技术,能够更好地捕获复杂的关系和长尾知识。通过这种全面的拆解和分析,我们可以更深入地理解知识图谱检索方法的各个方面,为进一步改进和优化提供了清晰的思路。这些创新点既保持了原有系统的优势,又在不同方面进行了拓展和深化,有潜力带来显著的改进和新的应用可能。

2024-09-25 14:20:20 929

原创 KG-Rank:用知识图谱和多级排序(相似度排名、答案扩展排名、MMR排名、重排)增强大模型,解决医疗问答准确性、多样性

KG-Rank是一个结合医学知识图谱和排序技术的大语言模型增强框架。它通过从知识图谱中检索相关信息,并使用多种排序技术优化这些信息,来提高模型生成长篇医疗问答的准确性。KG-Rank是一个知识图谱增强排序框架,它通过图谱中的知识来增强语言模型的回答,同时用排序技术来筛选最相关的知识。

2024-09-25 09:03:33 803

原创 KG-RAG 知识图谱+大模型:医疗问题输入 → 实体识别&链接 → 问题子图 → 子图文本化 → 相似度计算 → LLM问答

KG-RAG框架的全流程如下:接收用户的生物医学问题使用零样本提示技术和GPT-3.5-Turbo模型从问题中提取关键实体利用MiniLM预计算嵌入和Chroma向量数据库将提取的实体与SPOKE知识图谱中的疾病节点进行匹配基于匹配的实体,使用图遍历技术在SPOKE知识图谱中检索相关信息提取与疾病相关的三元组(主体-谓语-客体)关系将检索到的三元组转换为自然语言表述使用句子转换器模型将用户问题和检索到的上下文嵌入到同一向量空间利用余弦相似度计算来筛选最相关的上下文信息。

2024-09-24 09:00:29 685

原创 【绝对通俗易懂】知识图谱增强 RAG 思路 和 实现方案

举例:在处理"类风湿性关节炎"和"骨关节炎"这两种常见的关节疾病时,Graph RAG 能准确识别它们在病因、发病机制和治疗方法上的本质区别,避免因表面症状相似而导致的误诊。在传统的语义搜索中,"心肌梗塞"与"胃溃疡"这两个看似风马牛不相及的疾病,可能因为都与"胸痛"这一症状相关而被错误地联系在一起。当你问"我最近头疼、肚子疼、还有点晕,这是怎么回事"时,管理员会从每个症状出发,分别去找可能的原因,给你一个全面的解释。如果能让AI理解医学信息就像经验丰富的医生一样全面和深入,那会是多么令人振奋的突破!

2024-09-23 11:47:21 1084

原创 有女朋友后,怎么养成贤内助?为自己找个好伴侣,为孩子找个好妈妈,为母亲找个好儿媳

对常人来说,是快乐的,是一种享受,所以,在这种眼光的指导下,你会损失很多,良好的健康、充沛的精力、心灵的安宁、应得财富、每天都过得中规中矩,没有元气、勇气、自尊、幸福、自由。安全感是一个很抽象的东西,不是说只是你单纯的不去外面找 女人,然后钱够花,你就有安全感,当你看起来对未来是迷茫的, 也同样会让女人感觉到不安全感。慢慢的,她就会养成习惯,表现会越来越好,干的活儿可能比助理还多。② 如果违背了你的底线,你得严肃,对坏的行为惩罚,把这个事情摆在桌面上理清楚,不聊别想走,就是让她难受,给她坏的反应。

2024-09-22 14:23:57 901 17

原创 Rx Strategist:智能体实现处方验证的方方面面,如适应症、剂量、药物相互作用

在验证一个复杂的多药处方时,系统首先使用知识图谱快速检索每种药物的基本信息(子解法1和2),然后通过多阶段LLM管道分析药物之间的相互作用和对特定患者的适用性(子解法3),最后参考定制数据库中的最新药物信息进行最终判断(子解法4)。在多个子解法中,尤其是在知识图谱集成和LLM管道中,存在一个隐性的步骤,即将不同来源的医学术语标准化。通过结合知识图谱、多阶段LLM管道和专门的数据库,Rx Strategist系统试图在保证准确性和可靠性的同时,提高处方验证的效率和可扩展性。

2024-09-21 19:17:54 799

原创 DOG:知识图谱大模型问答的迭代交互式推理,克服长路径和假阳性关系挑战

虽然DoG框架最初是为了解决知识图谱问答(KGQA)中的复杂多跳问题而设计的,但它的核心思想和方法确实可以应用到医学领域,特别是在复杂医疗诊断和决策支持系统中。总的来说,DoG框架是为了解决LLMs在知识图谱问答任务中的局限性而提出的,特别是针对复杂的多跳问题,通过改进推理路径的构建和问题的简化过程来提高答案生成的准确性和可靠性。”,然后再进一步询问该人的死因。DoG框架结合LLM和知识图谱的方法可以应用于医疗AI辅助诊断系统,将先进的语言模型与结构化的医学知识结合,提供更准确、可解释的诊断建议。

2024-09-21 18:07:28 858

原创 GNN-RAG:用于大模型推理的图神经检索

基于GNN-RAG的任务,我将提炼出最精华的内容,并按照您的要求进行总结和分析。提炼书籍中最精华的20%(3000字):GNN-RAG是一种创新的方法,旨在结合图神经网络(GNN)和大型语言模型(LLM)的优势,用于知识图谱问答(KGQA)任务。这种方法的核心思想是利用GNN处理复杂的图结构信息,同时借助LLM的自然语言理解和生成能力。主要组成部分:GNN组件:负责处理知识图谱的结构信息密集子图检索:使用PageRank Nibble算法密集子图推理:采用ReaRev模型。

2024-09-20 21:47:57 1243

原创 MedPrompt:基于提示工程的医学诊断准确率优化方法

本研究表明,通过系统的提示工程(prompt engineering),可以显著提升通用大语言模型(如GPT-4)在专业领域(如医学)的表现,甚至超越经过专门训练的模型。关键发现:研究者开发的Medprompt提示策略使GPT-4在9个医学问答基准测试中全面超越了现有最佳结果。Medprompt在MedQA(USMLE考试)数据集上将错误率降低了27%,首次突破90%的准确率。Medprompt不依赖专门的医学训练或专家知识,而是通过组合动态少样本选择、自生成思维链和选项打乱集成等通用技术实现。

2024-09-20 15:40:32 1298

原创 KG Structure as Prompt:利用知识图谱构建Prompt,提高大模型对因果关系的理解

在少样本设置的实验中,我们证明了我们的方法优于大多数无KG基线,并达到了与使用完整数据集的传统微调相当的性能,即使在有限样本的情况下。形式上,我们将知识图谱定义为一个有向标记图KG = (N, E, R, F),其中N是节点(实体)集,E ⊆ N × N是边(关系)集,R是关系标签集,F : E → R是将边分配给关系标签的函数。我们比较了以下模型:模型(1)到(4)代表没有图上下文训练的模型,即基线,而标有"PBL"的模型(5到7)是我们提出的注入了来自KGs的图上下文信息的基于提示的学习方法。

2024-09-19 14:58:57 1462

原创 EyeCLIP:解决眼科模型在多模态数据整合、跨模态一致性和长尾分布处理方面的局限性

使用彩色眼底照相(CFP)作为输入模态, EyeCLIP 在诊断眼科疾病方面显著优于其他模型(所有 P

2024-09-19 08:54:17 817

原创 AI 教育-数学篇: 利用大模型进行自主错误分析和精细纠正

根据提供的问题、正确答案和学生的错误答案,推断并分析学生错误的原因。VATE系统旨在解决传统数学教育中错误分析和纠正方法的局限性,通过利用AI技术提供一个高效、个性化、可扩展的自动化错误分析和教学指导系统,以提升学生的学习效果和教育效率。【草稿分析】{草稿分析}使用双流大型模型分析每个学生的答案可以产生良好的结果,但考虑到我们庞大的用户群,可能会出现成千上万的学生同时发送请求的情况。当学生的答案被标记为错误时,系统会逐步处理他们的草稿、问题、问题解释和正确答案,从而得出错误原因的分析和后续学习的建议。

2024-09-18 16:59:40 914 2

原创 MAGDA:多智能体指南驱动的诊断助手

它们共同构成了一个复杂的诊断推理过程,使得MAGDA能够更好地模拟人类专家的诊断思路,同时保持高度的可解释性和准确性。综上所述,MAGDA方法的提出是为了解决医疗诊断自动化过程中的多个挑战,包括资源短缺、AI模型的局限性、零样本学习需求、结果可解释性以及知识整合等问题。它旨在提供一个能够在缺乏专业放射科医生的情况下,依据临床指南进行准确、可解释的医学图像诊断的智能辅助系统。例如:在真实的医疗环境中,可能有放射科技师进行初步筛查,放射科医生进行诊断,然后资深专家进行复核和优化。

2024-09-18 15:48:09 873

原创 下一代 推荐系统:多智能体 + 深度强化学习,充分利用文本信息,更深刻的理解用户真实需求和兴趣点

集中式训练(Centralized Training)介于完全去中心化智能体系统和传统的中心化智能体系统之间,解决俩者的部分问题,旨在提升效率、确保数据一致性、实现模型同步、统一训练策略、简化性能监控和资源优化、促进知识共享、提高可扩展性,并简化开发过程。方案一 只是 推荐系统与大模型 的简单结合,而 RPP 是一个更先进、更动态的系统,它将强化学习、提示工程和大语言模型深度整合,提供了更灵活、更个性化的推荐方案。, Agent n):这些是系统中的执行单元,根据中央控制器的指令与环境进行交互。

2024-09-16 08:16:02 2119

原创 下一代 AI 医疗:知识图谱RAG + 多智能体,听医生的话没前途,让医生听你的话才是正道!

但是,影像学的检查结果属于辅助地位,不能单凭影像学结果就做出正确的诊断,需要医生综合解读各方面的病情信息是才能做出正确的判断。图画完了,你并没有科学地、彻底地、逻辑完备地回答“为什么”,你只是说,根据你的猜测,应该是因为这几个缘故。其具体落实的表现形式是,临床专科疾病的知识图谱,如心血管病知识图谱、肺病知识图谱、危重症知识图谱等等。但大模型,ta 是黑盒,基于概率性输出,微调出的医学大模型,也会有幻觉、概率性输出的问题。人的见识是有限的,因果图分析适合大模型,因为他有智能、有世界模型。

2024-09-14 14:48:40 1118 1

原创 下一代 AI 教育:知识图谱RAG + 多智能体,听老师的话没前途,让老师听你的才是正道

因为这世间没什么是你不敢学(很幸福),没什么是你学不会的(更幸福),学会的东西没有什么是练不好的(不能更幸福了)。你完全可以自己分析,就上面这个,你找出【要素】、【流程】,这首诗就背出来了,还是长期记忆。老师讲,无非就是对着教辅书解析,从头到尾念一遍,然后你要背很多遍,过段时间还要复习。你听老师讲,是没有办法进入到 3 境界的,甚至看书就枯燥,第 2 境界都进不去。主要是找关联会比较慢(需要多练),但如果你找到了,找的直接,就是秒记、长期记忆。如果你学习文科,你如果不会关联,那就是死记硬背,很难受的。

2024-09-14 11:58:43 752

原创 下一代 AI 搜索:多智能体 + 系统2,解决 AI 搜索在复杂信息性能下降问题

在AI医疗搜索中,情境化意味着除了寻找直接的治疗方案外,还需评估与该方案相关的多个维度,包括患者个体差异、疾病阶段、治疗的潜在风险与益处、成本效益分析、患者偏好、社会文化背景、医疗资源可用性、最新医学研究、统计数据、患者相似案例、以及政策和法规等,以确保治疗方案的全面性和适用性。),AI 搜索直接让你语义搜索,就能找到最相关的答案。粗排是初步筛选,快速剔除明显不相关的结果;传统搜索通过关键词搜索,只有你很有经验的时候,你去搜索才能得到最相关的结果,这很反搜索,因为你是不了解一个东西,你才去搜索的。

2024-09-13 08:51:56 841

原创 下一代 大模型:多智能体 + 系统2(深思熟虑),摆脱输出概率性的系统1

因为自注意力机制会学习到一切隐性关联,而人只能想出的都是简化环境里的要素(只能通过逻辑编程,考虑驾驶时的各种状况,但根本描述不完),那些用语言逻辑规则描述不清楚的,只有AI才能找到。还有世间几乎所有力量的增长都有天花板,唯独算力持续几十年的指数增长(每10年增长100倍),现在不仅没有衰减,反而更加强劲,在一个上限低的世界,这股无限增长的力量就是神!也就是说,我们要打造完备的、全流程的、专科式的医学大模型,你会组合大量定式 + 显示推理还不够,你还得会对比推理找出隐藏的关键特征。

2024-09-13 08:33:21 1132

原创 人均 800 养生中餐海鲜料理,商业模式设计

我们老板说了,您平时宴请招待比较多,而我们最近有个活动:充 1 万送 3000,充 5 万送 3 万。:大家是王总的朋友,王总的朋友就是我们老板的朋友,也是我的朋友。当然选对人群也很重要,对的池塘钓大鱼,选客户赚大钱,是什么人都可以送的,需求的人才送给他。最少你需要充 1 万吧。只有你“算”明白了,你才敢去“换”,才敢去投入,才敢去“送”,才舍得“送”!刚刚你那么高逼格入场,每个朋友因为你都送10条河豚,朋友都把你捧天上去了。:王总,你是我们老板的好朋友,老板已经交代好了,送您 10 条河豚。

2024-09-11 17:52:39 1084

原创 C2P 因果推理链:让大模型具备人类级的因果推理能力

例如,当系统得出错误的因果结论时,可以要求它生成一个解释,说明为什么会得出这个错误结论。玩家可以在游戏中构建因果图,解决推理难题,这不仅能让学习过程更有趣,还能收集大量人类推理数据来改进模型。我们可以开发一个可视化工具,展示C2P的每一步推理过程,帮助用户理解和验证推理逻辑。C2P可以分析用户的历史行为,构建个人因果图谱,帮助用户理解自己的决策模式和行为动机。C2P可以填补动态因果推理的空白,开发一个能够实时更新因果图的系统,以适应rapidly变化的环境和数据流。它可以自主提出假设,设计实验,验证结果。

2024-09-10 16:10:45 954

原创 LEADER:解决药物推荐问题

最终的优化方案可能是一个结合了上下文感知、动态知识蒸馏、安全性检查的增强型LEADER系统,它不仅能提供准确的药物推荐,还能确保推荐的安全性和系统的高效运行。这不仅提高了系统的透明度和可追溯性,也有潜力改变整个医疗数据管理和药物推荐的模式。通过识别和定义这个隐性特征,我们可以更好地理解LEADER方法的优势,并为未来的研究提供新的方向,如进一步优化多模态医疗数据的融合技术。这个方法的创新之处在于它有效地结合了LLM的语义理解能力和传统推荐系统的效率,同时通过知识蒸馏解决了LLM在实际应用中的计算成本问题。

2024-09-02 13:46:30 1495

原创 DrugAgent:多智能体系统,新药研发速度提升10倍

知识融合: 在Knowledge Graph Agent和Search Agent的输出与AI Agent的预测结果融合时,涉及到不同来源、不同类型知识的融合。特征表示: 在AI Agent的特征提取步骤中,需要将药物和靶点的原始数据转化为适合机器学习模型处理的特征表示。可解释性分析: 虽然提高可解释性是一个明确的目标,但具体如何实现可解释性分析,特别是如何将不同智能体的输出转化为人类可理解的解释,是一个隐性的关键步骤。多智能体框架:为了实现这一目标,设计了一个"多智能体框架",这是整个系统的核心。

2024-09-01 17:53:19 967

原创 男人圣经 18

要是经常骂自己的话,别人骂你,你就没有感觉了,如果呢,你每次都在维护自己的自尊,别人骂你一句,你就跟人家玩命,别人骂一句,你就跟人家玩命。必须持续,它才能够产生力量,它如果断断续续的话,它是不可能产生力量的,就像你呼吸,你一直呼吸,你就一直存在,那么你断断续的呼吸。那你这一辈子就完蛋了,你太脆弱了,我遇到过好多人,老师说他两句,他就退学了,父母说他两句,他就离家出走了,特别特别的脆弱。你有没有智慧,它是由你的执行力决定的,而不是有什么由你的想法决定的,你的执行力它大于一切,你的体验它大于一切。

2024-08-31 22:30:03 956 1

原创 CAMEL:通过角色扮演,实现大模型自主合作的多智能体框架

举例:一位患者出现了持续性的腹痛,医生首先询问了发病的时间、位置、性质、伴随症状等(子解法1),接着为患者进行了腹部触诊、叩诊等体格检查(子解法2),考虑到病情原因尚不明确,医生开具了血常规、腹部CT等辅助检查(子解法3),同时详细了解了患者过去两年的慢性胃炎病史及家族胃癌史(子解法4)。每一轮对话都基于之前的对话历史,是一个渐进的过程。其中,准备阶段的输出(明确的任务和角色)是对话阶段的输入,而Inception Prompting技术贯穿对话阶段的始终,引导agent的对话方向。

2024-08-30 08:37:21 705

原创 Med-PMC:患者模拟 + 多模态 + 多轮 + 诊断 + 治疗建议

通过构建一个更接近真实临床场景的评估框架,Med-PMC致力于全面评估和改进MLLMs在医疗领域的应用能力,为未来AI辅助医疗诊断提供更可靠的技术支持。Med-PMC不只是测试简单的医学问答或报告生成能力,它评估的是MLLMs在复杂临床多模态任务中的整体表现。这种方法有潜力显著提高MLLMs在真实医疗环境中的表现,并为医疗AI系统的评估和改进提供一个更加全面和动态的框架。这模拟了真实医生的诊断和治疗过程。这个系统通过结合知识图谱的结构化表示和强化学习的自适应决策能力,为Med-PMC提供了一个强大的基础。

2024-08-27 10:43:41 769

原创 GRAPHCARE:双向图神经网络 + 个性化知识图谱 + 大模型,打开医疗保健预测领域之门

系统会从患者图中学习到三种类型的患者表示:患者节点嵌入可能关注于患者的基本信息;:最后,GRAPHCARE将个性化知识图谱与患者的医疗事件相结合,形成一个包含时间序列数据的“患者图”,这个图谱能够反映患者的医疗历程和健康状况。接下来,系统对这些知识图谱中的节点(如疾病、治疗方式)和边(如疾病与治疗方式之间的关系)进行聚类,以创建更为综合的表示,并简化知识图谱的结构。:然后,GRAPHCARE通过合并与患者相关的所有概念特定知识图谱,并结合患者的顺序访问数据,构建每个患者的“个性化知识图谱”。

2024-08-23 15:29:51 1030

原创 TCRAG:图灵完备 RAG + 高效医学诊断

总而言之,TC-RAG犹如一位全能的智囊团,既有渊博的知识,又有缜密的思维,还能进行自我反思和纠错,必将在智能问答和决策支持领域大放异彩,造福人类健康!当然,我可以用医学诊断的场景来具体化TC = (S, A, M, δ, s0, F, σ)的概念。例如,在分析一个复杂的病例时,系统需要同时考虑多个症状、检查结果和可能的诊断,这就需要一个能够有效组织和管理这些信息的内存系统。例如,在医疗诊断过程中,系统需要根据患者症状的严重程度和检查结果的可靠性来调整诊断策略,这就需要一个能够动态管理状态的系统。

2024-08-23 14:35:17 778

原创 MedGraphRAG:医学版 GraphRAG

不同于现有的以概念-实体关联为主的知识库, 我们更强调因果关联, 刻画疾病的发生、发展、转归的因果链条。可以看到,从数据处理到图谱构建再到语义检索生成,这一方法始终秉持语义优先、因果增强的理念,力求将多源异构医学数据转化为高度结构化、语义丰富的医学洞见,以支撑可解释、有逻辑、会推理的智能诊断。这一技术框架的核心理念, 是充分利用多源异构医学数据, 建立起以因果推理为导向的时序诊断模型, 在纵向时间和横向空间两个维度上, 动态整合患者的多模态医学信息, 形成全景式的诊断路径。

2024-08-22 14:51:37 972

原创 我的学习方法 兼 大模型提示词:让任何人,任何时间,读懂,任何领域,任何论文

一个手眼通天的地方,这是一个打开自己的格局的地方,懂当前科学理解,会有星辰大海我可往,高山沼泽不可障的通天胆量。你不会你要当场找出这个公式。这些招数定式,让你从庞大的不确定性,精确的,找到确定性。

2024-08-22 09:32:58 700 8

原创 高效持续预训练:GPT4 水平的 8B 医疗大模型,解决微调收敛不稳定

平均医疗问答任务表现也接近GPT-4.具体方案: 设计一个基于问题的学习框架,让模型不断生成和回答医学相关问题,通过这种自我提问和回答的过程来深化理解和扩展知识。具体方案: 开发一个错误分析系统,自动收集和分析模型的错误预测,并将这些错误转化为新的学习目标,促进模型的持续改进。具体方案: 设计一个基于案例的学习系统,模拟人类医生的学习过程,通过分析和学习大量真实医疗案例来提升模型的诊断能力。具体方案: 通过分析和模仿顶级医生的诊断决策过程,开发一个"专家思维模拟器",让模型学习专家级的医疗推理能力。

2024-08-21 14:16:16 1642

原创 KI-DDI:知识图谱 + 大模型 + 图注意力,医学诊断

KI-DDI如何通过考虑每位患者的独特症状描述和生活因素来提供更个性化的诊断和建议,而医学大模型+知识图谱则提供了更标准化但不太具体的诊断方法。采用了受tf-idf方法启发的症状频率-逆疾病频率(sf-idf)方法来确定边的权重,这个权重反映了症状和疾病之间的关联程度。症状频率-逆疾病频率(sf-idf)方法是受到文本分析中广泛使用的tf-idf(词频-逆文档频率)方法启发而来的。有时候还会伴随轻微的恶心感。构建了一个症状-疾病知识图谱(S-S-D),其中症状和疾病作为节点,它们之间的边表示共现关系。

2024-08-21 11:31:49 1140

原创 男人圣经 17

是期望和现实之间的落差,就是你得先有一个期望(你是最棒的,你就是第一),但你现在的成绩不是第一,期望和现实之间的差距,让你如鲠在喉,如芒在背,产生强烈的不适、失落、不甘,正是不甘导致不服气、不服输的劲,让你奋发。就像小时候学习走路,就傻傻的,我就会是走路,我摔跤,我也就会走路,我就应该会走路,你不会怀疑的,你不会胡思乱想的,你不会去推理的,你不会脸上挂不住的。你只要骨子里面东西支撑起来,你的心灵支撑照样强大的,那你有了这个强大支撑,你就敢说敢干,任何东西压不倒你,时间也压不倒你,挫折压不倒你。

2024-08-20 12:17:01 892 10

原创 多模态分析代理 MAIA:多智能体解决 视觉模型 黑盒问题

这可能是指一个特定的图像分割模型或方法,它使用文本提示来指导分割过程,确保神经元的选择性(neuron selectivity)与文本描述的“ground-truth”(真实情况)相匹配。: 这是一个条件性的合成神经元,它在“dog”(狗)存在的情况下,特别响应“leash”(牵引绳)的概念。通过这种方式,它可以探索和验证模型行为背后的因果关系,而不仅仅是表面的关联。例如,如果我们问它某个特定的“视觉单元”在观察 森林背景 时是如何反应的,它会设计一个实验,改变图片的背景,然后观察这个单元的反应变化。

2024-08-15 10:53:14 1026

原创 男人圣经 16

你是一个强大的帝王,就能够让你的子民,让你的臣子,让你的这些下属能够跟着一起过上好的生活,你是个弱者,你就被欺负。像二代,从小捧着手心里,保护的太好了,可能别人不经意的一句话,就让ta受伤,而且还有记很久,不计代价的报复别人。这跟古代七国有啥区别?他们向前爬,试图站起来,摔倒,然后再站起来,就这样跌跌撞撞,直到有⼀天真正站了起来。我只要活一口气,我就给你干,一直干,除非哪天我干不动了,我走了,我活着就跟你干!干过啊,我干过三四年了,我老有经验了,你心里也吓得要死,但嘴上说,然后继续干,

2024-08-15 10:34:02 979

原创 Graph-Cot:图上迭代推理

之所以使用这些子解法,是因为它们共同构成了一个系统化的框架,能够有效地结合LLM的文本处理能力和图结构数据的丰富关系,以解决复杂的知识推理任务。与MindMap的多链推理方法在处理复杂问题时都采用了迭代和多步骤的推理过程,但它们在信息组织、知识利用和推理可视化方面各有侧重。每个子解法针对的是问题解决过程中的一个特定方面,从数据结构化到信息检索,再到迭代推理和结果反馈,形成了一个闭环的解决问题流程。:在诊断过程中,根据患者的症状,LLM可能需要多次迭代,每次迭代都可能发现新的相关症状或需要进行的检查。

2024-08-13 11:16:18 994

原创 RPP/RPP+:多智能体强化学习 + 长期个性化推荐

(因为需要提供关键信息以指导智能体行动)

2024-08-12 14:45:47 1093

原创 标签外推广检测算法:确保大模型在提供医疗建议时,不会推荐超出药品说明书规定的用途

没有NER,就无法进行产品和适应症的识别;没有产品和适应症的识别,就无法进行有效的标签外识别。比如,为已获批准的药物增加新的适应症,不仅成本高昂,而且过程繁琐,而且新适应症带来的收益可能并不足以弥补这一过程的开销和努力。问题:GenAI模型可能学习到未经充分评估安全性和有效性的医疗产品用途,这些用途未获得监管机构的批准,存在公共健康风险。不能超出批准的药品说明书和标签界定的范围,包括但不局限于超出适应证、剂量、给药途径、给药频率、疗程或人群等。这个逻辑链是线性的,每个步骤都是基于前一个步骤的结果进行的。

2024-08-09 09:29:24 793

原创 TaGAT:多模态视网膜图像融合的拓扑感知图注意力网络,荧光素眼底血管造影 (FFA) 与彩色眼底 (CF) 和光学相干断层扫描 (OCT) 与共焦显微镜视网膜图像融合方面 SOTA 方法

在医学图像合成这一领域,汇集不同成像技术的信息对于提升诊断精准度和治疗策略的制定极为关键,尤其是在视网膜健康领域,关键特征在不同成像技术下所呈现的形态各异。目前基于深度学习的技术在视网膜图像合成方面的应用还不够深入,导致在合成过程中无法充分保留解剖结构和细微血管的细节。为应对这一挑战,我们提出了一种新型的拓扑感知图注意力网络(TaGAT),它结合了创新的拓扑感知编码器(TAE)和图注意力网络(GAT),以加强不同成像技术下视网膜血管图拓扑的空间特征。

2024-08-08 16:42:08 593

blog配套资料、blog配套资料、blog配套资料

blog配套资料blog配套资料blog配套资料blog配套资料blog配套资料blog配套资料

2023-07-14

博客配套资料博客配套资料

博客配套资料博客配套资料博客配套资料

2022-08-06

博客配套博客配套博客配套

博客配套博客配套博客配套博客配套

2022-08-05

博客配套https://download.csdn.net/download/qq_41739364/86339152

https://download.csdn.net/download/qq_41739364/86339152

2022-08-05

配套博客资料,配套博客资料

配套博客资料

2022-08-05

processed_data.xlsx

博客配套数据:https://blog.csdn.net/qq_41739364/article/details/120967416

2021-10-27

original_data.xlsx

博客配套资源:https://blog.csdn.net/qq_41739364/article/details/120967416

2021-10-27

博客配套资源数据集.zip

博客配套资源

2021-10-09

莎士比亚诗歌数据集.txt.zip

博客配套资源

2021-10-08

恐龙名字数据集.txt.zip

博客配套数据集

2021-10-08

我的数据集+我的数据集.zip

博客配套资源

2021-09-07

data.xlsx.zip

博客配套数据

2021-08-21

神经网络识别猫的项目代码

博客程序:https://blog.csdn.net/qq_41739364/article/details/118094724

2021-07-17

疫情监控项目源码.zip

博客配套:https://blog.csdn.net/qq_41739364/article/details/115742139

2021-04-15

label.xlsx ....

label.xlsx ....

2021-03-08

data.xlsx ....

配套博客:https://blog.csdn.net/qq_41739364/article/details/113818246

2021-03-08

smi_sol.dat

化学分子数据

2021-03-08

口罩厂亏损分析的相关数据

配套博客:https://blog.csdn.net/qq_41739364

2021-02-23

breast_cancer.xlsx

配套博客:https://blog.csdn.net/qq_41739364/article/details/113818246

2021-02-21

att_faces.zip

人脸数据集,数据集里有 40 个人,每个都有 10 张照片,分别存储在 40 个文件夹里,s1-s40,每个文件夹下面都有 10 张 .pgm 照片,每张照片的尺寸 112*92(长 * 宽)。

2020-07-04

att_face.zip

人脸测试数据集,配套博客:https://blog.csdn.net/qq_41739364/category_9414685.html

2020-07-03

阶的估计.pdf

配套博客:https://blog.csdn.net/qq_41739364/article/details/86718524

2019-09-03

1.数据挖掘入门.pdf

配套博客:https://blog.csdn.net/qq_41739364/column/info/42524 的 第四章。

2019-08-13

dict.txt.zip

配套博客:https://blog.csdn.net/qq_41739364/article/details/96767359

2019-07-23

phpStudy.zip

配套博客:https://blog.csdn.net/qq_41739364/article/details/93403910

2019-07-19

SQL字符型注入漏洞.pdf

配套博客:https://blog.csdn.net/qq_41739364/article/details/94025729

2019-07-18

0day安全:软件漏洞分析技术(第2版)一 PART2.pdf

全书分为俩部分,这是第二部分。 配套博客:https://blog.csdn.net/qq_41739364/article/details/96202158

2019-07-17

0day安全:软件漏洞分析技术(第2版)一 PART1.pdf

全书分为 2 部分,这是第一部,配套博客:https://blog.csdn.net/qq_41739364/article/details/96202158

2019-07-17

burpsuite实战指南.pdf

配套博客:https://blog.csdn.net/qq_41739364/article/details/93862232

2019-07-02

渗透测试实践指南:必知必会的工具与方法.pdf

中文版,配套博客:https://blog.csdn.net/qq_41739364/article/details/93862232

2019-06-28

端口大全介绍(2).doc

很详细,配套博客:https://mp.csdn.net/postedit/93862232

2019-06-27

初等数论大全

计算机数学专题5: 数论配套资料 博客地址:https://mp.csdn.net/postedit/86761357

2019-04-24

C语言RSA素数部分

配套博客:https://blog.csdn.net/qq_41739364/article/details/86775886

2019-04-08

DES加密位操作部分 C语言

配套博客:https://blog.csdn.net/qq_41739364/article/details/86775886

2019-04-07

DES加密代码 C语言

配套博客:https://blog.csdn.net/qq_41739364/article/details/86775886

2019-04-07

RSA加密 C语言实现

配套博客:https://blog.csdn.net/qq_41739364/article/details/86775886

2019-04-07

DES加密代码 java

匹配博客:https://blog.csdn.net/qq_41739364/article/details/86775886

2019-04-07

系统学习 公钥体系

配套博客 https://blog.csdn.net/qq_41739364/article/details/86775886 ,效果最佳。

2019-03-28

系统学习对称加密

配套博客 https://blog.csdn.net/qq_41739364/article/details/86775886 ,效果最佳。

2019-03-28

计算机程序设计艺术卷1基础算法中文版

算法殿堂级著作,计算机程序设计艺术卷1基础算法中文版,保证为优质PDF。

2019-03-05

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除