平面上的最接近点对

本文介绍了如何使用分治法解决平面上最接近点对的问题,通过将点按横坐标排序并逐步缩小查找范围,最终达到线性时间复杂度O(nlogn)。递归过程会不断将问题分解,直到区域中只剩少量点,从而找到最近点对。
摘要由CSDN通过智能技术生成

一维最接近点对问题:

#include <cstdio>
#include <algorithm>
using namespace std;
const int inf=0x3f3f3f3f;
double s[100];
double mn;

int main(){
    int n;
    while(~scanf("%d",&n)){
        for(int i=0;i<n;i++){
            scanf("%lf",s+i);
        }
        sort(s,s+n);
        mn=inf;
        for(int i=0;i<n-1;i++){
            mn=s[i+1]-s[i]>mn?mn:s[i+1]-s[i];
        }
        printf("%lf\n",mn);
    }
}

使用分治求解:

S中的n个点为x轴上的n个实数x1,x2,...,xn。最接近点对即为这n个实数中相差最小的两个实数。显然可以先将点排好序,然后线性扫描就可以了(上述程序实现)。但我们为了便于推广到二维的情形,为下面二维,尝试用分治法解决这个问题。

假设我们用m点将S分为S1和S2两个集合,这样一来,对于所有的p(S1中的点)和q(S2中的点),有p<q。

递归地在S1和S2上找出其最接近点对{p1,p2}和{q1,q2},并设

                  d = min{ |p1-p2| , |q1-q2| }                   

由此易知,S中最接近点对或者是{p1,p2},或者是{q1,q2},或者是某个{q3,p3},如下图所示。


技术分享

    如果最接近点对是{q3,p3},即|p3-q3|<d,则p3和q3两者与m的距离都不超过d,且在区间(m-d,d]和(d,m+d]各有且仅有一个点。这样,就可以在线性时间内实现合并。

    此时,一维情形下的最近点对时间复杂度为O(nlogn)。

#include <cstdio>
#include <cstdlib>
#include <algorithm>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值