强化学习学习资料

一、介绍及资料

强化学习介绍:http://www.cse.unsw.edu.au/~cs9417ml/RL1/introduction.html

强化学习博客站点:http://www.algorithmdog.com/ml/rl-series

JS库: http://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

二、最近要看:

    2016-12-11号论文:快速入门的方法

    MAS 英文文章

    周日的论文,自己那篇

           2016-12-17:

    •  Markov games as a framework for multi-agent reinforcement learning
    • 这周日论文  
    • 音乐推荐
    • 上周日论文      

三、博弈论:

四、Q-learning:

  知乎:如何用简单例子讲解 Q - learning 的具体过程?

五、MDP:

 

转载于:https://www.cnblogs.com/1995hxt/p/6164389.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值