部分转自http://hi.baidu.com/lydrainbowcat/item/f8a5ac223e092b52c28d591c
作者提示:在阅读本文之前,请确保您已经理解并掌握了基本的Tarjan算法,不会的请到http://hi.baidu.com/lydrainbowcat/blog/item/42a6862489c98820c89559f3.html阅读。
附:C++程序(我个人的)
void add(int x,int y)//加边
{
ver[++tot]=y,next[tot]=head[x],head[x]=tot;
}
void tarjan(int x)
{
dfn[x]=low[x]=++num;
s[++p]=x,v[x]=1;
for(int i=head[x];i;i=next[i])
if(!dfn[ver[i]])
{
tarjan(ver[i]);
low[x]=min(low[x],low[ver[i]]);
}
else if(v[ver[i]])
low[x]=min(low[x],dfn[ver[i]]);
if(low[x]==dfn[x])
{
int y; ++t;
do{y=s[p--],v[y]=0; c[y]=t;}while(y!=x);//c数组标记每个点属于哪一个SCC
}
}
program p1111;
//Tyvj P1111舞会
//Tarjan + object栈写法
uses math;
type
Tstack=object
t:array[0..1000] of longint;
ins:array[0..1000] of boolean;
Stop:longint;
function isin(P:longint):boolean;
function top:longint;
function pop:longint;
procedure push(P:longint);
end;
rec=record
e,next:longint;
end;
Var
s:tstack;
a:array[0..10000] of rec;
b,dfn,low:array[0..1000] of longint;
no,ans,n,i,ed,top:longint;
procedure add(st,ed:longint);inline;
begin
inc(top);
with a[top] do
begin
e:=ed;
next:=b[st];
end;
b[st]:=top;
end;
function tstack.top:longint;
begin
exit(t[stop]);
end;
function tstack.pop:longint;
begin
ins[t[stop]]:=false;
pop:=t[stop];
dec(stop);
end;
procedure tstack.push(P:longint);
begin
inc(stop);
t[stop]:=p;
ins[p]:=true;
end;
function tstack.isin(P:longint):boolean;
begin
exit(ins[p]);
end;
procedure tarjan(P:longint);
var
u:longint;
y:rec;
begin
inc(no);
dfn[p]:=no;low[p]:=no; s.push(p);
u:=b[p];
while u<>0 do
begin
y:=a[u];
u:=y.next;
if dfn[y.e]=0 then
begin
tarjan(y.e);
low[p]:=min(low[p],low[y.e]);
end else
if s.isin(y.e) then
low[p]:=min(low[p],dfn[y.e]);
end;
if low[p]=dfn[p] then
begin
inc(ans);
while s.top<>p do s.pop;
s.pop;
end;
end;
begin
readln(n); top:=0;
for i:=1 to n do
begin
ed:=1;
while ed<>0 do
begin
read(ed);
if ed=0 then break;
add(i,ed);
end;
readln;
end;
ans:=0;
no:=0;
for i:=1 to n do
if dfn[i]=0 then
tarjan(i);
writeln(ans);
readln;
end.
基本概念:
1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点。
2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合。
3.点连通度:最小割点集合中的顶点数。
4.割边(桥):删掉它之后,图必然会分裂为两个或两个以上的子图。
5.割边集合:如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合。
6.边连通度:一个图的边连通度的定义为,最小割边集合中的边数。
7.缩点:把没有割边的连通子图缩为一个点,此时满足任意两点之间都有两条路径可达。
注:求块<>求缩点。缩点后变成一棵k个点k-1条割边连接成的树。而割点可以存在于多个块中。
8.双连通分量:分为点双连通和边双连通。它的标准定义为:点连通度大于1的图称为点双连通图,边连通度大于1的图称为边双连通图。通俗地讲,满足任意两点之间,能通过两条或两条以上没有任何重复边的路到达的图称为双连通图。无向图G的极大双连通子图称为双连通分量。
Tarjan算法的应用论述:
1.求强连通分量(见上一篇文章,本文第一行有链接)、割点、桥、缩点:
对于Tarjan算法中,我们得到了dfn和low两个数组,
low[u]:=min(low[u],dfn[v])——(u,v)为后向边,v不是u的子树;
low[u]:=min(low[u],low[v])——(u,v)为树枝边,v为u的子树;
下边对其进行讨论:
若low[v]>=dfn[u],则u为割点,节点v的子孙和节点u形成一个块。因为这说明v的子孙不能够通过其他边到达u的祖先,这样去掉u之后,图必然分裂为两个子图。这样我们处理点u时,首先递归u的子节点v,然后从v回溯至u后,如果发现上述不等式成立,则找到了一个割点u,并且u和v的子树构成一个块。
void tarjan(int x)
{
v[x]=1,dfn[x]=low[x]=++num;
for(int i=head[x];i;i=next[i])
if(!v[ver[i]])
{
tarjan(ver[i]);
low[x]=min(low[x],low[ver[i]]);
if(dfn[x]<=low[ver[i]]) v[x]++;
}
else low[x]=min(low[x],dfn[ver[i]]);
if((x==1&&v[x]>2)||(x>1&&v[x]>1)) v[x]=2; else v[x]=1;//v[x]=2表示该点为割点,注意其中第一个点要特判
}
若low[v]>dfn[u],则(u,v)为割边。 但是实际处理时我们并不这样判断,因为有的图上可能有重边,这样不好处理。我们记录每条边的标号(一条无向边拆成的两条有向边标号相同),记录每个点的父 亲到它的边的标号,如果边(u,v)是v的父亲边,就不能用dfn[u]更新low[v]。这样如果遍历完v的所有子节点后,发现 low[v]=dfn[v],说明u的父亲边(u,v)为割边。
void tarjan(int x)
{
vis[x]=1;
dfn[x]=low[x]=++num;
for(int i=head[x];i;i=next[i])
if(!vis[ver[i]])
{
p[ver[i]]=edge[i];//记录父亲边
tarjan(ver[i]);
low[x]=min(low[x],low[ver[i]]);
}
else if(p[x]!=edge[i])//不是父亲边才更新
low[x]=min(low[x],dfn[ver[i]]);
if(p[x]&&low[x]==dfn[x]) f[p[x]]=1;//是割边
}
2.求双连通分量以及构造双连通分量:
对于点双连通分支,实际上在求割点的 过程中就能顺便把每个点双连通分支求出。建立一个栈,存储当前双连通分支,在搜索图时,每找到一条树枝边或后向边(非横叉边),就把这条边加入栈中。如果 遇到某时满足DFS(u)<=Low(v),说明u是一个割点,同时把边从栈顶一个个取出,直到遇到了边(u,v),取出的这些边与其关联的点,组 成一个点双连通分支。割点可以属于多个点双连通分支,其余点和每条边只属于且属于一个点双连通分支。
对于边双连通分支,求法更为简单。只需在求出所有的桥以后,把桥边删除,原图变成了多个连通块,则每个连通块就是一个边双连通分支。桥不属于任何一个边双连通分支,其余的边和每个顶点都属于且只属于一个边双连通分支。
一个有桥的连通图,如何把它通过加边变成边双连通图?方法为首先求出所有的桥,然后删除这些桥边,剩下的每个连通块都是一个双连通子图。把每个双连通子图收缩为一个顶点,再把桥边加回来,最后的这个图一定是一棵树,边连通度为1。
统 计出树中度为1的节点的个数,即为叶节点的个数,记为leaf。则至少在树上添加(leaf+1)/2条边,就能使树达到边二连通,所以至少添加的边数就 是(leaf+1)/2。具体方法为,首先把两个最近公共祖先最远的两个叶节点之间连接一条边,这样可以把这两个点到祖先的路径上所有点收缩到一起,因为 一个形成的环一定是双连通的。然后再找两个最近公共祖先最远的两个叶节点,这样一对一对找完,恰好是(leaf+1)/2次,把所有点收缩到了一起。
3.求最近公共祖先(LCA)
在 遍历到u时,先tarjan遍历完u的子树,则u和u的子树中的节点的最近公共祖先就是u,并且u和【u的兄弟节点及其子树】的最近公共祖先就是u的父 亲。注意到由于我们是按照DFS顺序遍历的,我们可用一个color数组标记,正在访问的染色为1,未访问的标记为0,已经访问到即在【u的子树中的】及 【u的已访问的兄弟节点及其子树中的】染色标记为2,这样我们可以通过并查集的不断合并更新,通过find实现以上目标。
注:用链表存储边和问题,可以使得该算法的时间复杂度降低为O(n+m+q),其中n、m、q分别为点、边、问题数目。本文中为了书写简便,采用的是矩阵的存储方式。
function find(x:longint):longint;
begin
if f[x]<>x then f[x]:=find(f[x]);
find:=f[x];
end;
procedure tarjan(u:longint);
begin
f[u]:=u; color[u]:=1;
for i:=1 to n do
if (g[u,i])and(color[i]=0) then//g[u,i]表示u连着i
begin
tarjan(i); f[i]:=u;
end;
for i:=1 to n do
if ((ask[u,i])or(ask[i,u]))and(color[i]=2) then//ask[u,i]表示询问了u,i
begin
lca[u,i]:=find(i); lca[i,u]:=lca[u,i];
end;
color[u]:=2;
end;
参考例题:Poj 1523、2942、3694、3352、3177 Tyvj P1111
POJ1523
program p1523;
//割点+dfs判断去割点后联通块
Type
rec=record
e,next:longint;
end;
Var
top,n,minn,all,i,st,ed,j,ans,no:longint;
a:array[0..800] of rec;
b,dfn,low,v:array[0..102] of longint;
vv:array[0..102] of boolean;
function min(a,b:longint):longint;inline;begin if a<b then exit(a);exit(b); end;
function max(a,b:longint):longint;inline;begin if a>b then exit(a);exit(b); end;
Procedure add(st,ed:longint);inline;
begin
inc(top);
with a[top] do
begin
e:=ed;
next:=b[st];
end;
b[st]:=top;
end;
procedure clear(var p:array of longint);begin fillchar(p,sizeof(p),0); end;
procedure visit(P:longint);
var
u:longint;
y:rec;
begin
vv[p]:=true;
u:=b[p];
while u<>0 do
begin
y:=a[u];
u:=y.next;
if not vv[y.e] then visit(y.e);
end;
end;
procedure dfs(P,pa:longint);
var
u:longint;
y:rec;
begin
inc(no);
dfn[p]:=no;
low[p]:=no;
v[p]:=1;
u:=b[p];
while u<>0 do
begin
y:=a[u];
u:=y.next;
if y.e<>pa then
if dfn[y.e]=0 then
begin
dfs(y.e,p);
low[p]:=min(low[p],low[y.e]);
if low[y.e]>=dfn[p] then inc(v[p]);
end else low[p]:=min(low[p],dfn[y.e]);
end;
if ((p=minn) and (v[p]>2)) or ((p>minn) and (v[p]>1)) then inc(ans);
end;
begin
all:=0;
while true do
begin
inc(all);
fillchar(a,sizeof(a),0);clear(b); top:=0;
n:=0;minn:=maxlongint;
while true do
begin
read(st);
if st=0 then break;
readln(ed);
n:=max(n,max(st,ed));
minn:=min(minn,min(st,ed));
add(st,ed);
add(ed,st);
end;
if top=0 then halt;
clear(v);clear(dfn);clear(low);
ans:=0; no:=0;
dfs(minn,0);
writeln('Network #',all);
if ans=0 then writeln(' No SPF nodes') else
for j:=minn to n do
if ((j=minn) and (v[j]>2)) or ((j>minn) and (v[j]>1)) then
begin
write(' SPF node ',j,' leaves '); ans:=0;
fillchar(vv,sizeof(vv),false);
vv[j]:=true;
for i:=minn to n do
if not vv[i] then
begin
visit(i);
inc(ans);
end;
writeln(ans,' subnets');
end;
writeln;
end;
end.
注:本文部分内容摘自BYVoid神牛的Blog:http://www.byvoid.com/blog/biconnect/