Tarjan缩点/边双/点双

本文介绍了Tarjan算法在有向图和无向图中的应用,用于查找强连通分量、割点和割边。详细阐述了点双连通分量和边双连通分量的概念,并提供了实际问题的解决方案,如在线查询边的数量、判定路径可达性等。同时,文章讨论了在缩点后如何处理DAG和无向图的细节,以及如何利用这些知识解决竞赛编程题目。
摘要由CSDN通过智能技术生成

代码实现

所以其实就三个玩意
1.dfn[],low[],indx
2.stack<int>s,bool pd[]
3.scc[],scnt,col[]等我们要求的信息
  
变量名 				用处
dfn          	记录当前已经访问了几个节点
scc		 	    记录当前已经有了几个强连通分量
dfn[ maxn ] 	当前节点是第几个被访问到的
low[ maxn ] 	当前节点所能访问到的最小的 dfn[ ]
scc[ maxn ] 	记录各个节点所属于的强连通分量编号
s[ maxn ] 		存储可能构成强连通分量的节点的栈
top 			存储栈顶      

那么我们如果要求scc这样一个东西,应该是用什么结构呢?
思想其实并不是很难,就是我们要求SCC,将它放入dfs序中,发现它有一定的特点,那就是在搜索树中的点,一定可以通向祖先,那他们就是一个scc,因为他们可以彼此到达。

所以我们要找最大的scc,那么就是要求出最小的祖先。
所以每个节点不用存下所有祖先,而只用存这一个就够了。
所以有了low[]来存x的搜索树内边和最小的点。

那么肯定是要dfs的。

发现low[]=min(low[son]),min(dfn[to]);

所以dfs回溯递归处理,该问题具有自相似性。

实际应用

可以分为两类

1.有向图

缩点之后变成了一个DAG,那么什么时候应该缩点呢,
例子:

  1. “喜欢”是可以传递的——如果A喜欢B,B喜欢C,那么A也喜欢C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值