【vijos1543/luogu1936】极值问题/水晶灯火灵 - 数论

背景

小铭的数学之旅2。

描述

已知m、n为整数,且满足下列两个条件:
① m, n∈{1, 2, ..., K}
② (n^2-mn-m^2)^2=1
编一程序,对给定K,求一组满足上述两个条件的m、n,并且使m^2+n^2的值最大。例如,若K=1995,则m=987,n=1597,则m、n满足条件,且可使m^2+n^2的值最大。

格式

输入格式

输入仅一行,K的值。

输出格式

输出仅一行,m^2+n^2的值。

 

思路

这个是vijos的题面,洛谷的太鬼畜了,vijos是要求$m^2+n^2$,洛谷是要求$n$和$m$

$Fibonacci$相邻两项即可满足条件,证明如下:

$n^2-nm-m^2=n^2-m(n+m)=(f_{n})^2 - f_{n-1}f_{n+1}= \pm 1$

所以我们只要证明$(f_{n})^2 - f_{n-1}f_{n+1}= \pm 1$即可

首先$(f_{2})^2 - f_{1}f_{3}=1-2=-1 \ , \ (f_{3})^2 - f_{2}f_{4}=9-10=-1$

我们使用数学归纳法,假设结论对$n(n\geq 2)$时,$2n$和$2n+1$均成立

则$(f_{2n})^2=(f_{2n-1}+f_{2n-2})^2=(f_{2n-1})^2+2f_{2n-1}f_{2n-2}+(f_{2n-2})^2$

$=f_{2n-1}(f_{2n-1}+f_{2n-2})+f_{2n-1}f_{2n-2}+f_{2n-3}f_{2n-1}-1$

$=f_{2n-1}f_{2n}+f_{2n-1}(f_{2n-2}+f_{2n-3})-1$

$=f_{2n-1}f_{2n}+(f_{2n-1})^2-1$

$=f_{2n-1}(f_{2n}+f_{2n-1})-1$

$=f_{2n-1}f_{2n+1}-1$

所以$f_{2n}$成立,此时又可得

$(f_{2n+1})^2=(f_{2n}+f_{2n-1})^2=(f_{2n})^2+2f_{2n}f_{2n-1}+(f_{2n-1})^2$

$=f_{2n}(f_{2n+1}+f_{2n-1})+f_{2n}f_{2n-1}+f_{2n-2}f_{2n}+1$

$=f_{2n}f_{2n+1}+f_{2n}(f_{2n-1}+f_{2n-2})+1$

$=f_{2n}f_{2n+1}+(f_{2n})^2+1$

$=f_{2n}(f_{2n+1}+f_{2n})+1$

$=f_{2n}f_{2n+2}+1$

所以对一切$n$,结论均成立

#include <cstdio>
int main() {
    int k,m = 1,n = 1;
    scanf("%d",&k);
    while (n+m <= k) {
        n += m;
        m = n-m;
    }
    printf("%I64d",(long long)m*(long long)m+(long long)n*(long long)n);
    return 0;
}

 

转载于:https://www.cnblogs.com/lrj124/p/8980098.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值