最短代码实现包含100个key的字典,且每个value值不同

最短代码实现包含100个key的字典,且每个value值不同

{x:x*2 for x in range(100)}

转载于:https://www.cnblogs.com/liuxu2019/p/11181951.html

### 回答1: 答:public static int[] shortestPath(int[][] graph, int start, int end) { // 记录节点的距离 int[] distances = new int[graph.length]; // 初始化节点距离 for (int i = 0; i < distances.length; i++) { distances[i] = Integer.MAX_VALUE; } // 创建一个visited数组,用来记录节点是否已经被访问 boolean[] visited = new boolean[graph.length]; // 设置起点的距离为0 distances[start] = 0; // 创建一个队列,用来存储将要被访问的节点 Queue<Integer> queue = new LinkedList<Integer>(); queue.add(start); // 开始循环,直到队列中没有元素 while (!queue.isEmpty()) { // 从队列中取出一个节点 int node = queue.remove(); // 访问该节点 visited[node] = true; // 遍历该节点的邻接点,计算邻接点的最短距离 for (int i = 0; i < graph.length; i++) { if (graph[node][i] != 0 && !visited[i]) { int distance = distances[node] + graph[node][i]; if (distance < distances[i]) { distances[i] = distance; queue.add(i); } } } } // 返回终点的距离 return distances; } ### 回答2: 最短路径算法是解决在图中找出从起点到终点的最短路径的问题。其中,最著名和广泛使用的是迪杰斯特拉算法(Dijkstra's Algorithm)。 以下是一个使用迪杰斯特拉算法的示例代码: ```python def shortest_path(graph, start, end): # 创建一个空的字典,用于保存每个节点的最短距离 distances = {} # 创建一个空的字典,用于保存每个节点的前一个节点 previous = {} # 创建一个空列表,用于保存已访问过的节点 visited = [] # 初始化距离字典,起点到自己的距离为0,其他节点的距离为无穷大 for node in graph: distances[node] = float('inf') distances[start] = 0 # 循环找出未访问过的节点中最小距离的节点,并将其标记为已访问 while len(visited) < len(graph): min_distance = float('inf') min_node = None for node in graph: if node not in visited and distances[node] < min_distance: min_distance = distances[node] min_node = node visited.append(min_node) # 更新与当前节点相邻的节点的最短距离和前一个节点 for neighbor in graph[min_node]: distance = distances[min_node] + graph[min_node][neighbor] if distance < distances[neighbor]: distances[neighbor] = distance previous[neighbor] = min_node # 构建最短路径 path = [] node = end while node != start: path.insert(0, node) node = previous[node] path.insert(0, start) return path # 示例图,使用邻接表表示 graph = { 'A': {'B': 5, 'C': 2}, 'B': {'D': 1, 'E': 6}, 'C': {'B': 1, 'D': 4}, 'D': {'E': 1}, 'E': {} } start_node = 'A' end_node = 'E' result = shortest_path(graph, start_node, end_node) print(result) # 输出:['A', 'C', 'B', 'D', 'E'] ``` 以上代码使用邻接表表示图,其中每个节点及其相邻节点与对应的距离存储在字典中。算法首先初始化距离和前一个节点字典,然后循环找出未访问过的节点中最小距离的节点,更新与其相邻节点的最短距离和前一个节点。最后,根据前一个节点构建最短路径。以上代码示例的输出结果是从节点A到节点E的最短路径。 ### 回答3: 最短路径算法是一种用于找到两个顶点之间最短路径的算法。其中,最经典且常用的算法是Dijkstra算法,下面是用Python实现Dijkstra算法的代码: ```python # Dijkstra算法 def dijkstra(graph, start, end): # 创建一个字典来存储每个顶点的最短路径长度 dist = {} for vertex in graph: dist[vertex] = float('inf') dist[start] = 0 # 创建一个空的集合来存储已找到最短路径的顶点 visited = set() while len(visited) != len(graph): # 在未访问过的顶点中选择最短距离的顶点 min_dist = float('inf') min_vertex = None for vertex in graph: if vertex not in visited and dist[vertex] < min_dist: min_dist = dist[vertex] min_vertex = vertex visited.add(min_vertex) # 更新选中顶点的相邻顶点的最短距离 for neighbor in graph[min_vertex]: if neighbor not in visited: new_dist = dist[min_vertex] + graph[min_vertex][neighbor] if new_dist < dist[neighbor]: dist[neighbor] = new_dist # 获取最短路径 path = [] current_vertex = end while current_vertex != start: path.append(current_vertex) current_vertex = min(graph[current_vertex], key=lambda x: dist[x] + graph[current_vertex][x]) path.append(start) path.reverse() return dist[end], path ``` 在这段代码中,我们使用邻接字典来表示图,其中字典的键是顶点,是与该顶点相连的邻居顶点及其距离。算法通过计算每个顶点到起始顶点的最短路径长度,并将路径长度存储在`dist`字典中。然后,使用一个`visited`集合来记录已找到最短路径的顶点。通过迭代遍历未访问的顶点,选择距离起始顶点最近的顶点,并更新其邻居顶点的最短路径长度。最后,通过回溯从目标顶点到起始顶点,得到最短路径的列表。 要使用该算法,只需将待处理的图以邻接字典的形式传递给`dijkstra`函数,同时指定起始顶点和目标顶点。函数将返回最短路径的长度和路径列表。 这就是用于实现最短路径算法的Python代码段。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值