[bzoj1717][Usaco2006 Dec]Milk Patterns 产奶的模式 (hash构造后缀数组,二分答案)

以后似乎终于不用去学后缀数组的倍增搞法||DC3等blablaSXBK的方法了= =

 

定义(来自关于后缀数组的那篇国家集训队论文。。)

后缀数组:后缀数组SA是一个一维数组,它保存1..n的某个排列SA[1],SA[2],……,SA[n],并且保证Suffix(SA[i])<Suffix(SA[i+1]),1≤i<n。

     也就是将S的n个后缀从小到大进行排序之后把排好序的后缀的开头位置顺次放入SA中。

height数组:定义height[i]=suffix(sa[i-1])和suffix(sa[i])的最长公共前缀,也就是排名相邻的两个后缀的最长公共前缀。

 

接着是许昊然在《数据结构漫谈》中的讲解//原谅我不知道复制文字的正确技巧QAQ

听起来(而且事实上)的确挺简单的= =

最感人的是反正前面复杂度都已经O(n log²n)了。。。后面就随便玩了反正超时了也是前面的锅。。。

然而复杂度实在是有点虚。。。虽然本题n才2w,但是OJ上跑了600+ms。。。。。似乎还是数据随机的情况下

如果是较极限的数据(似乎没什么区别。。)的话10w的数据范围学校机子要跑3s。。。。

然后删掉取模,让它自然溢出的话似乎大概也许可能是在1s内跑出来的吧。。。。。。。。事实证明n=10w时要1.5s左右= =QAQ//学校机子1s内能循环2亿次= =

 

综上。。。我选择相信测评姬(捂脸

 

SA数组和height数组造出来后这题就是《后缀数组——处理字符串的有力工具》里面的例题了= =

诶好像有点详略不当

引用部分原文:

  先二分答案为mid,把题目变成判定性问题。

    解决这个问题的关键还是利用height数组。把排序后的后缀分成若干组,其中每组的后缀之间的height值都不小于mid(最长公共前缀长度不小于mid的两个后缀一定在同一组)。

    判断有没有一个组的后缀个数不小于k即可。

 

傻逼代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=20012;
struct zs{
    int pos;
}sa[maxn];
int s[maxn];
ll pre[maxn],modd,jc[maxn],val1,val2;
int l,r,mid,i,j,k,n,m,now,nowlen,K;
int h[maxn];
inline int getlen(int s1,int s2){//求两后缀(分别从s1,s2开始)的最长公共前缀的长度 
    if(s[s1]!=s[s2])return 0;
    int l=1,r=n-max(s1,s2)+1,mid;
    while(l<r){
        mid=(l+r+1)>>1;
        val1=pre[s1+mid-1]-pre[s1-1]*jc[mid]%modd;
        val2=pre[s2+mid-1]-pre[s2-1]*jc[mid]%modd;
        if(val1<0)val1+=modd;if(val2<0)val2+=modd;
        if(val1==val2)l=mid;else r=mid-1;
    }
    return l;
}
inline bool bigger(int s1,int s2){
    if(s[s1]!=s[s2])return s[s1]>s[s2];
    int len=getlen(s1,s2);
    if(len==n-max(s1,s2)+1)
        return s1<s2;
    return s[s1+len]>s[s2+len];
}
bool cmp(zs a,zs b){
    return !bigger(a.pos,b.pos);
}
int main(){
    scanf("%d%d",&n,&K);
    for(i=1;i<=n;i++)scanf("%d",&s[i]);
    modd=1233333333;
    jc[0]=1;
    for(i=1;i<=n;i++)jc[i]=jc[i-1]*197%modd,pre[i]=(pre[i-1]*197%modd+s[i])%modd;/
    for(i=1;i<=n;i++)sa[i].pos=i;
    sort(sa+1,sa+1+n,cmp);
    for(i=2;i<=n;i++)h[i]=getlen(sa[i].pos,sa[i-1].pos);
    l=0;r=n;
    while(l<r){
        mid=(l+r+1)>>1;
        now=1;nowlen=0;
        for(i=2;i<=n+1&&nowlen<K;i++)if(h[i]<mid)nowlen=max(nowlen,i-now),now=i;
        if(nowlen<K)r=mid-1;else l=mid;
    }
    printf("%d\n",l);
    return 0;
}
View Code

 

 

 

转载于:https://www.cnblogs.com/czllgzmzl/p/4989723.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值