LOJ #6051. 「雅礼集训 2017 Day11」PATH

完了感觉最近留了好多坑的说,这题也是模模糊糊地会一点

首先我们发现题目要求的是单调不上升的序列个数,那么一个套路就是用值减去下标

然后考虑连续位置的限制,这个我们做一个置换然后尽量向后取

这样拿值和位置卷积就变成了合法方案数的分子\(\times\)总方案数的分母?

感觉策不太懂啊,QQ上加了一个dalao问下细节,具体的到时候来填吧

先把CODE放了

#include<cstdio>
#include<cctype>
#define RI register int
#define CI const int&
#define Tp template <typename T>
using namespace std;
const int N=500005,mod=1004535809;
int n,m,len,lim,a[N],b[N],fact[N],F[N<<3],G[N<<3],ans;
class FileInputOutput
{
    private:
        static const int S=1<<21;
        #define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,S,stdin),A==B)?EOF:*A++)
        char Fin[S],*A,*B;
    public:
        Tp inline void read(T& x)
        {
            x=0; char ch; while (!isdigit(ch=tc()));
            while (x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));
        }
        #undef tc
}File;
inline void maxer(int& x,CI y)
{
    if (y>x) x=y;
}
inline int quick_pow(int x,int p=mod-2,int mul=1)
{
    for (;p;p>>=1,x=1LL*x*x%mod) if (p&1) mul=1LL*mul*x%mod; return mul;
}
class Poly_solver
{
    private:
        int rev[N<<3],p;
        inline void swap(int& x,int& y)
        {
            int t=x; x=y; y=t;
        }
        inline int sum(CI a,CI b)
        {
            int t=a+b; return t>=mod?t-mod:t;
        }
        inline int sub(CI a,CI b)
        {
            int t=a-b; return t<0?t+mod:t;
        }
    public:
        inline void init(CI n)
        {
            for (lim=1,p=0;lim<=n;lim<<=1,++p);
            for (RI i=0;i<lim;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<p-1);
        }
        inline void NTT(int *f,CI opt)
        {
            RI i; for (i=0;i<lim;++i) if (i<rev[i]) swap(f[i],f[rev[i]]);
            for (i=1;i<lim;i<<=1)
            {
                int m=i<<1,D=quick_pow(3,~opt?(mod-1)/m:mod-1-(mod-1)/m);
                for (RI j=0;j<lim;j+=m)
                {
                    int W=1; for (RI k=0;k<i;++k,W=1LL*W*D%mod)
                    {
                        int x=f[j+k],y=1LL*f[i+j+k]*W%mod;
                        f[j+k]=sum(x,y); f[i+j+k]=sub(x,y);
                    }
                }
            }
            if (!~opt)
            {
                int Inv=quick_pow(lim); for (i=0;i<lim;++i) f[i]=1LL*f[i]*Inv%mod;
            }
        }
}P;
int main()
{
    //freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
    RI i; for (File.read(n),i=1;i<=n;++i)
    File.read(a[i]),b[a[i]]=i,++F[a[i]-i+n];
    for (i=m=a[1];i;--i) maxer(b[i],b[i+1]),++G[b[i]-i+m];
    for (P.init((len=n+m)<<1),P.NTT(F,1),P.NTT(G,1),i=0;i<lim;++i)
    F[i]=1LL*F[i]*G[i]%mod; for (P.NTT(F,-1),i=ans=1;i<=len;++i)
    ans=1LL*ans*quick_pow(i,F[i-1+n+m])%mod; ans=quick_pow(ans);
    for (fact[0]=i=1;i<=m;++i) fact[i]=1LL*fact[i-1]*i%mod;
    for (i=1;i<=n;++i) ans=1LL*ans*fact[a[i]]%mod;
    return printf("%d",ans),0;
}

转载于:https://www.cnblogs.com/cjjsb/p/10691385.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值