题目传送门
设 $m = \sum_{i = 1}^{n} a_i$。
总方案数显然等于 $\frac{m!}{\prod_{i = 1}^{n} a_i!}$。
考虑这样一个网格图,第 $i$ 行有 $a_i$ 个网格。
那么我们在这个网格中填 $1$ 到 $m$ ,如果保证每一行严格递增,那么第 $i$ 次移动后第 $j$ 维坐标就是第 $i$ 行中小于等于 $i$ 的数数量。
因此一条路径可以唯一对应一种填法。
路径中任意一个点都满足条件,等价于要求每一列递增。
这等价于给定杨表的形状,问满足条件的标准杨表的数量。
根据钩子公式,我们有
$$
\frac{m!}{\prod_{1 \leqslant i\leqslant n, 1\leqslant j\leqslant a_i} h(i, j)}
$$
其中 $h(i, j)$,表示第 $i$ 行,第 $j$ 列的格子的勾长。
它等于这个格子正下方和正右方的格子数再加一。
这个仍然不好处理。
注意到每一行的钩长互不相同,并且在 $[1, a_i - i + n]$ 之中。
考虑把不存在的钩长除掉。
考虑枚举在第 $i$ 行下方的一行 $j$,那么钩长 $(j - i) + (a_i - a_j)$ 不存在。
因为当 $j$ 递增时,$a_j$ 不增,所以去掉的钩长也互不相同,我们总共会去掉 $n - i$ 个钩长。
因此式子可以转化为
$$
\frac{m! \prod_{1\leqslant i < j\leqslant n} [(a_i - i) - (a_j - j)]}{\prod_{i = 1}^{n} (a_i - i + n)!}
$$
所以有:
$$
ans = \prod_{i = 1}^{n} \frac{a_i!}{(a_i - i + n)!} \prod_{i \leqslant i < j \leqslant n}[(a_i - i) - (a_j - j)]
$$
现在的问题转化为计算右半部分。
不难注意到 $(a_i - i) - (a_j - j)$ 不会太大,并且总是正数。
所以考虑直接计算每种值出现了多少次。
这个是基础 NTT 操作。
然后就做完了。
Code
/**
* loj
* Problem#6051
* Accepted
* Time: 4126ms
* Memory: 51352k
*/
#include <bits/stdc++.h>
using namespace std;
typedef bool boolean;
#define ll long long
const int Mod = 1004535809;
const int N = 1 << 22;
const int bzmax = 23;
const int g = 3;
void exgcd(int a, int b, int& x, int& y) {
if (!b) {
x = 1, y = 0;
} else {
exgcd(b, a % b, y, x);
y -= (a / b) * x;
}
}
int inv(int a) {
int x, y;
exgcd(a, Mod, x, y);
return (x < 0) ? (x + Mod) : (x);
}
template <const int Mod = :: Mod>
class Z {
public:
int v;
Z() : v(0) { }
Z(int v) : v(v) { }
Z(ll x) : v(x % Mod) { }
Z operator + (Z b) {
int x = v + b.v;
return Z((x >= Mod) ? (x - Mod) : (x));
}
Z operator - (Z b) {
int x = v - b.v;
return Z((x < 0) ? (x + Mod) : (x));
}
Z operator * (Z b) {
return Z(1ll * v * b.v);
}
Z operator ~ () {
return inv(v);
}
Z operator -() {
return Z(0) - *this;
}
Z& operator += (Z b) {
return *this = *this + b;
}
Z& operator -= (Z b) {
return *this = *this - b;
}
Z& operator *= (Z b) {
return *this = *this * b;
}
// constexpr operator int () const {
// return v;
// }
};
typedef Z<> Zi;
Zi qpow(Zi a, int p) {
if (p < Mod - 1)
p += Mod - 1;
Zi rt = 1, pa = a;
for ( ; p; p >>= 1, pa = pa * pa) {
if (p & 1) {
rt = rt * pa;
}
}
return rt;
}
class NTT {
private:
Zi gn[bzmax + 4], _gn[bzmax + 4];
public:
NTT() {
for (int i = 0; i <= bzmax; i++) {
gn[i] = qpow(Zi(g), (Mod - 1) >> i);
_gn[i] = qpow(Zi(g), -((Mod - 1) >> i));
}
}
void operator () (Zi* f, int len, int sgn) {
for (int i = 1, j = len >> 1, k; i < len - 1; i++, j += k) {
if (i < j)
swap(f[i], f[j]);
for (k = len >> 1; k <= j; j -= k, k >>= 1);
}
Zi *wn = (sgn > 0) ? (gn + 1) : (_gn + 1), w, a, b;
for (int l = 2, hl; l <= len; l <<= 1, wn++) {
hl = l >> 1, w = 1;
for (int i = 0; i < len; i += l, w = 1) {
for (int j = 0; j < hl; j++, w *= *wn) {
a = f[i + j], b = f[i + j + hl] * w;
f[i + j] = a + b;
f[i + j + hl] = a - b;
}
}
}
if (sgn < 0) {
Zi invlen = ~Zi(len);
for (int i = 0; i < len; i++) {
f[i] *= invlen;
}
}
}
int correct_len(int len) {
int m = 1;
for ( ; m <= len; m <<= 1);
return m;
}
} NTT;
const int inf = (signed) (~0u >> 1);
int n;
Zi a[N], b[N];
int A[500005];
Zi fac[N >> 1], _fac[N >> 1];
void init_fac(int n) {
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i;
_fac[n] = ~fac[n];
for (int i = n; i; i--)
_fac[i - 1] = _fac[i] * i;
}
int main() {
scanf("%d", &n);
int mi = inf, mx = -inf;
for (int i = 1; i <= n; i++) {
scanf("%d", A + i);
mi = min(mi, A[i] - i);
mx = max(mx, A[i] - i);
}
int L = mx - mi + 1, t = NTT.correct_len(L << 1);
for (int i = 1; i <= n; i++) {
a[A[i] - i - mi] += 1;
b[mx - A[i] + i] += 1;
}
NTT(a, t, 1);
NTT(b, t, 1);
for (int i = 0; i < t; i++)
a[i] *= b[i];
NTT(a, t, -1);
init_fac(mx + n);
Zi ans = 1;
for (int i = 1; i <= n; i++)
ans *= fac[A[i]] * _fac[A[i] - i + n];
mi -= mx;
for (int i = 0; i < t; i++) {
if (i + mi > 0 && a[i].v) {
ans *= qpow(i + mi, a[i].v);
}
}
printf("%d\n", ans.v);
return 0;
}