残差

残差对应的英文应该是 residual 吧,举一个简单的 multivariate regression model 的例子
Y = Xβ + ε,
这里 X 是一个 矩阵, β是要估计的参数,是一个向量,ε 就是 random error。
如果你用 最小二乘法估计,那么你得到了Y的预测值,即 Y_hat (就是Y 上一个hat,我现在打不出来),这样 预测残差值就是 ε_hat = Y - Y_hat, 就是实际观测值和预测值的差。
 
追问
实际观测值与预测值之差不就是残差值么,残差值和预测残差值这两个概念一样?
 
追答
你好!首先表示抱歉,我没有仔细想就给出了回答。我刚才又查了一下,发现我上面的答案确实是对residual的解释,而并非predicted residual。

我在SAS 里找了一下predicted residual的定义是这样的:
predicted residual for observation i is defined as the residual for the ith observation that results from dropping the ith observation from the parameter estimates.
也就是说把第i个观测值删掉,然后再回归后得到的新的residual。
predicted residual 主要用于算 PRESS (predicted residual sums of squares),这个在确定 influential points 时有用 (在我所学的知识中predicted residual的应用仅限于此,是否有其他用途我就也不晓得了)。


转载于:https://www.cnblogs.com/Alex0111/p/8378547.html

<think>嗯,用户想了解Transformer架构中的残差连接的作用和实现。首先,我需要回忆一下Transformer的基本结构,特别是编码器和解码器部分。记得残差连接在深度学习中很重要,比如在ResNet中就有应用,用来解决梯度消失和网络退化的问题。不过Transformer里的残差连接具体是怎么做的呢? 根据引用[3],残差连接是每个编码器和解码器层的重要组成部分,每个子层比如自注意力层和前馈神经网络层的输出都会和输入相加。那作用应该和ResNet类似,帮助梯度流动,稳定训练。不过可能还有Transformer特有的考虑,比如处理序列数据时的信息保留。 再看引用[2],里面提到残差连接和层归一化通常组合使用,提高训练效率和性能。可能需要解释这两者的结合,比如残差连接后接层归一化,而不是之前。比如输入x经过自注意力层得到输出,然后加上原始x,再进行归一化?或者相反?这点可能需要确认,比如在原始论文中的顺序是Add & Norm,也就是先残差连接再归一化。 作用方面,引用[1]和[2]都提到残差连接帮助缓解梯度消失,保留原始信息。可能还有促进特征复用,让模型更深的优势。实现的话,具体来说就是每个子层的输出加上输入,然后再归一化。例如,自注意力层的计算是x -> self_attention -> +x -> layer_norm -> feed_forward -> +x -> layer_norm这样? 另外,引用[4]提到有研究尝试不用残差或归一化也能训练深度Transformer,但通常残差连接还是标准配置。说明残差连接在传统Transformer中的必要性。用户可能想知道为什么需要它,以及具体实现步骤。 总结一下,残差连接在Transformer中的作用主要有三点:缓解梯度消失、保留原始信息、促进特征复用。实现方式是每个子层输出输入相加,然后进行层归一化。比如,自注意力层的输出加上输入x,再经过归一化层,接着进入前馈网络,同样处理。这样每一层都能有效地传递梯度,同时保留关键信息。 可能还需要引用具体的公式,比如$y = \text{LayerNorm}(x + \text{Sublayer}(x))$,其中Sublayer是自注意力或前馈网络。这部分需要结合引用中的内容,特别是引用[3]和[5]提到的归一化的作用,确保输入分布稳定,加快训练。 用户的问题可能还涉及代码实现,比如在PyTorch中如何添加残差连接和层归一化。不过用户没有明确问代码,所以可能不需要。但需要明确说明实现步骤,比如数学表达式和结构设计。 最后,检查是否有遗漏的要点,比如残差连接如何其他组件(如多头注意力)结合,或者在不同层中的应用是否一致。确保回答准确,符合提供的引用内容,并且用中文清晰表达。</think>### Transformer架构中的残差连接作用实现 #### 一、残差连接的作用 1. **缓解梯度消失问题** 在深度神经网络中,梯度消失是常见挑战。残差连接通过将输入直接子层输出相加($y = x + \text{Sublayer}(x)$),使梯度能够绕过非线性变换直接反向传播,从而改善深层网络的训练稳定性[^3][^4]。 2. **保留原始输入信息** 残差连接强制模型仅学习输入输出之间的差异(残差),避免因多层叠加导致原始特征被过度修改。例如,自注意力层的输出可能丢失部分位置信息,而残差连接可将原始位置编码保留到后续层[^2][^3]。 3. **促进特征复用** 通过跨层叠加残差路径,模型可以灵活选择不同层次的特征表达,增强模型的表达能力[^1]。 #### 二、残差连接的实现方式 在Transformer中,残差连接层归一化(Layer Normalization)共同作用于每个子层,典型结构如下: $$ \text{Output} = \text{LayerNorm}(x + \text{Sublayer}(x)) $$ 其中$\text{Sublayer}(x)$可以是自注意力层或前馈神经网络层。具体实现步骤如下: 1. **自注意力层的残差连接** - 输入$x$经过自注意力计算:$\text{Attention}(x)$ - 残差相加:$x_{\text{res}} = x + \text{Attention}(x)$ - 层归一化:$x_{\text{norm}} = \text{LayerNorm}(x_{\text{res}})$ 2. **前馈神经网络的残差连接** - 输入$x_{\text{norm}}$经过前馈网络:$\text{FFN}(x_{\text{norm}})$ - 残差相加:$x_{\text{final}} = x_{\text{norm}} + \text{FFN}(x_{\text{norm}})$ - 层归一化:$\text{Output} = \text{LayerNorm}(x_{\text{final}})$ **代码示例(简化版PyTorch实现)** ```python import torch.nn as nn class TransformerLayer(nn.Module): def __init__(self, d_model): super().__init__() self.self_attn = MultiHeadAttention(d_model) # 假设已定义多头注意力 self.ffn = FeedForwardNetwork(d_model) # 假设已定义前馈网络 self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) def forward(self, x): # 自注意力子层:残差连接 + 层归一化 x_attn = self.self_attn(x) x = self.norm1(x + x_attn) # 前馈子层:残差连接 + 层归一化 x_ffn = self.ffn(x) x = self.norm2(x + x_ffn) return x ``` #### 三、设计特点注意事项 1. **层归一化的顺序** Transformer采用**先残差连接后归一化**的顺序(Post-LN),而非“先归一化后残差”(Pre-LN)。这种设计在原始论文中被证明更稳定[^5]。 2. **权重初始化的影响** 残差连接允许使用更大的学习率,但需配合适当的权重初始化(如He初始化)以防止输出爆炸[^4]。 3. **变体结构探索** 近期研究(如引用[4])尝试去除残差连接或归一化层,但传统Transformer仍依赖此设计以保证训练效率和性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值