[最小生成树入门专题1] zoj1203 E - 这是水题5

本文基于电影《剑鱼》中黑客Stanley利用算法完成资金转移的情节,提出了一个算法问题。任务是计算连接多个城市的最短隧道总长度,以收集分散的资金。文章描述了如何将这一现实问题转化为计算几何中的最小生成树问题,并提供了解决思路。
摘要由CSDN通过智能技术生成

There exists a world within our world 
A world beneath what we call cyberspace. 
A world protected by firewalls, 
passwords and the most advanced 
security systems. 
In this world we hide 
our deepest secrets, 
our most incriminating information, 
and of course, a shole lot of money. 
This is the world of Swordfish. 

  We all remember that in the movie Swordfish, Gabriel broke into the World Bank Investors Group in West Los Angeles, to rob $9.5 billion. And he needed Stanley, the best hacker in the world, to help him break into the password protecting the bank system. Stanley's lovely daughter Holly was seized by Gabriel, so he had to work for him. But at the last moment, Stanley made some little trick in his hacker mission: he injected a trojan horse in the bank system, so the money would jump from one account to another account every 60 seconds, and would continue jumping in the next 10 years. Only Stanley knew when and where to get the money. If Gabriel killed Stanley, he would never get a single dollar. Stanley wanted Gabriel to release all these hostages and he would help him to find the money back. 
  You who has watched the movie know that Gabriel at last got the money by threatening to hang Ginger to death. Why not Gabriel go get the money himself? Because these money keep jumping, and these accounts are scattered in different cities. In order to gather up these money Gabriel would need to build money transfering tunnels to connect all these cities. Surely it will be really expensive to construct such a transfering tunnel, so Gabriel wants to find out the minimal total length of the tunnel required to connect all these cites. Now he asks you to write a computer program to find out the minimal length. Since Gabriel will get caught at the end of it anyway, so you can go ahead and write the program without feeling guilty about helping a criminal. 

Input:  
The input contains several test cases. Each test case begins with a line contains only one integer N (0 <= N <=100), which indicates the number of cities you have to connect. The next N lines each contains two real numbers X and Y(-10000 <= X,Y <= 10000), which are the citie's Cartesian coordinates (to make the problem simple, we can assume that we live in a flat world). The input is terminated by a case with N=0 and you must not print any output for this case. 

Output:  
You need to help Gabriel calculate the minimal length of tunnel needed to connect all these cites. You can saftly assume that such a tunnel can be built directly from one city to another. For each of the input cases, the output shall consist of two lines: the first line contains "Case #n:", where n is the case number (starting from 1); and the next line contains "The minimal distance is: d", where d is the minimal distance, rounded to 2 decimal places. Output a blank line between two test cases. 

Sample Input:  
5
0 0
0 1
1 1
1 0
0.5 0.5
0

Sample Output:  
Case #1:
The minimal distance is: 2.83

题意:输入n,再输入n行,每行一个坐标x,y(-10000<x,y<10000),输出将这些坐标联通的最小路径保留两位小数输出,输入0结束输入,每个样例之间输出一个空行。

思路:将这些坐标编号为1-n,再将一个点到其余n-1个点的距离存入数组,之后,就请交给prime算法吧(因为已经知道边的权值和顶点个数,只需要用prime算法找出最小联通值)




转载于:https://www.cnblogs.com/hellocheng/p/7350083.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值