FZU Problem 1692 Key problem(循环矩阵)

循环矩阵,这里有解说:http://wenku.baidu.com/link?

url=zcJ-sxrj0QDqzz8xCnHTnB7gxjoNRyOZzS4_4ZA22c8Bs9inYn6vVkqTVr_w-riLa8oRnYA9SRcCZ9f4UciCUNGeNAG4dCGclYRPS18YLGa

推出第一层以下依据性质就能够得到。

Problem 1692 Key problem

Accept: 144    Submit: 663
Time Limit: 1000 mSec    Memory Limit : 32768 KB

 Problem Description

Whenever rxw meets Coral, he requires her to give him the laboratory key. Coral does not want to give him the key, so Coral ask him one question. if rxw can solve the problem, she will give him the key, otherwise do not give him. rxw turns to you for help now,can you help him?N children form a circle, numbered 0,1,2, ... ..., n-1,with Clockwise. Initially the ith child has Ai apples. Each round game, the ith child will obtain ( L*A (i+n-1)%n+R*A (i+1)%n ) apples. After m rounds game, Coral would like to know the number of apples each child has. Because the final figure may be very large, so output the number model M.

 Input

The first line of input is an integer T representing the number of test cases to follow. Each case consists of two lines of input: the first line contains five integers n,m,L,R and M . the second line contains n integers A0, A1, A2 ... An-1. (0 <= Ai <= 1000,3 <= n <= 100,0 <= L, R <= 1000,1 <= M <= 10 ^ 6,0 <=m < = 10 ^ 9). After m rounds game, output the number model M of apples each child has.

 Output

Each case separated by a space. See sample.

 Sample Input

1 3 2 3 4 10000 1 2 3

 Sample Output

120 133 131

 Source

FOJ月赛-2009年3月--- Coral
#include <set>
#include <map>
#include <queue>
#include <math.h>
#include <vector>
#include <string>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>

#define eps 1e-8
#define pi acos(-1.0)

#define LL __int64

using namespace std;


const int maxn = 110;

LL a[maxn], b[maxn], f[maxn];

LL mod, n;

void mul(LL a[], LL b[])
{
    LL c[maxn];
    memset(c, 0, sizeof(c));
    for(int i = 0; i < n; i++)
        for(int j = 0; j < n; j++) c[i] = (a[j]*b[(i-j+n)%n]+c[i])%mod;
    memcpy(a, c, sizeof(c));
}

void pow_mod(LL a[], LL b)
{
    LL c[maxn];
    memset(c, 0, sizeof(c));
    c[0] = 1LL;
    while(b)
    {
        if(b&1) mul(c, a);
        mul(a, a);
        b >>= 1;
    }
    memcpy(a, c, sizeof(c));
}

int main()
{
    int T;
    cin>>T;
    LL m, l, r;
    while(T--)
    {
        cin>>n>>m>>l>>r>>mod;
        for(int i = 0;i < n;i++)  cin>>a[i];
        memset(f, 0, sizeof(f));
        f[0] = 1; f[1] = r; f[n-1]=l;
        pow_mod(f, m);
        LL ans[maxn];
        for(int i = 0; i < n; i++)
        {
            ans[i] = 0;
            for(int j = 0;j < n;j++)
                ans[i] = (ans[i]+a[j]*f[(i-j+n)%n])%mod;
        }
        cout<<ans[0];
        for(int i = 1; i < n; i++) cout<<" "<<ans[i];
        cout<<endl;
    }
    return 0;
}


转载于:https://www.cnblogs.com/jzdwajue/p/6921080.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值