也许更好的阅读体验
\(\mathcal{Description}\)
有\(n\)个格子,每次等概率随机给一个格子染色,问涂\(m\)次后期望有多少格子被染色了
\(\mathcal{Solution}\)
设\(f[i]\)表示涂\(i\)次后期望有多少格子被染色了
现在进行第\(i\)次染色,有两种情况
- 有\(\frac{f[i-1]}{n}\)的概率涂到已经涂过的格子
- 有\(\frac{n-f[i-1]}{n}\)的概率涂到没涂过的格子
需要注意的是,无论是以上哪种,都已经有\(f[i-1]\)个格子被染色了
所以有
\(f[i]=\frac{f[i-1]}{n}·0+\frac{n-f[i-1]}{n}·1+f[i-1]\)
将其化简
\(f[i]=\frac{n-f[i-1]}{n}+f[i-1]=\frac{n-1}{n}f[i-1]+1\)
此时该式就是一个等差数列套等比数列
于是我们可以求其通项公式,博主懒得求了写下大致过程
令\(k=\frac{n-1}{n}\)
\(f_n=kf_{n-1}+1\)
\(f_n+\frac{1}{k-1}=kf_{n-1}+\frac{k}{k-1}\)
\(f_n+\frac{1}{k-1}=k(f_{n-1}+\frac{1}{k-1})\)
令\(g_n=f_n+\frac{1}{k-1}\)
则\(g_n=kg_{n-1}\)
怎么求\(g_n\)就不用说了吧
\(f_n=g_n-\frac{1}{k-1}\)
\(f_n\)也能求出来了
初值\(f[0]=0\)答案为\(f[m]\)
应正向循环
本篇博客亦被收进期望总结
如有哪里讲得不是很明白或是有错误,欢迎指正
如您喜欢的话不妨点个赞收藏一下吧