UVA 10917 Walk Through the Forest SPFA

uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1858

题目大意:

Jimmy下班后决定每天沿着一条不同的路径回家,欣赏不同的风景。他打算只沿着满足如下条件的(A,B)道路走:存在一条从B出发回家的路,比所有从A出发回家的路径都短。你的任务是计算一共有多少条不同的回家路径。其中公司的编号为1,家的编号为2.

思路:

题目给出的n于1000以内,所以我直接用了邻接矩阵了。

首先求出每个点回家的最短路径。dis[u](SPFA或者dijkstra都可以)

题目说的存在一条从B出发回家的路,比所有从A出发回家的路径都短,即dis[B]<dis[A],这样我们创建一个新的图,当dis[B]<dis[A]建立有向变A->B,然后用动态规划求解。

(没一个点要加上与他相连的所有边的次数)



#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
const int INF=10000000;
const int MAXN=1024;
int dis[MAXN];
int n,m;
int map[MAXN][MAXN];
int cango[MAXN][MAXN];
int dp[MAXN];
void SPFA()
{
	int start=2;
	bool vis[MAXN]={0};
	deque<int> q;
	q.push_back(start);
	dis[start]=0;
	vis[start]=true;
	while(!q.empty())
	{
		int cur=q.front();
		q.pop_front();
		vis[cur]=false;

		for(int i=1;i<=n;i++)
			if(map[cur][i]+dis[cur] < dis[i])
			{
				dis[i]=map[cur][i]+dis[cur];
				if(!vis[i])
				{
					vis[i]=true;
					if(!q.empty() && dis[i] < dis[q.front()])
						q.push_front(i);
					else
						q.push_back(i);
				}
			}
	}
}

int dfs(int cur)
{
	 if(dp[cur]!=-1)
		 return dp[cur];  
	
	 int temp=0;
	for(int i=1;i<=n;i++)
		if(cango[cur][i])
		{
			temp+=dfs( i );
		}
	return dp[cur]=temp;
}

int main()
{
	while(~scanf("%d",&n),n)
	{
		for(int i=1;i<=n;i++)
		{
			dis[i]=INF;
			dp[i]=-1;
			for(int j=1;j<=n;j++)
			{				
				map[i][j]=INF;
				cango[i][j]=0;
			}
		}

		scanf("%d",&m);
		for(int i=0;i<m;i++)
		{
			int from,to,dis;
			scanf("%d%d%d",&from,&to,&dis);
			map[from][to]=map[to][from]=dis;
		}
		SPFA();

		for(int i=1;i<=n;i++)
			for(int j=1;j<=n;j++)
				if(dis[i] > dis[j] && map[i][j]!=INF)

					cango[i][j]=1;

		dp[2]=1;
		dfs(1);

		printf("%d\n",dp[1]);
	}
}



转载于:https://www.cnblogs.com/murmured/p/5004135.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>