BZOJ 1208 - set / Treap

这道题可以用set水过,也可以练习写一下treap...
显然任何时候,领养人和宠物都不会同时存在……
所以就相当于每次查询序列的前驱/后继了…
贴上两份代码吧…

代码一(set):

// BZOJ 1208 set

#include <cstdio>
#include <set>
#include <cstring>
using namespace std;

 #define rep(i,a,b) for (int i=a; i<=b; i++)
 #define read(x) scanf("%d", &x)
 #define mod 1000000
 #define INF 0x7fffffff

 set<int> S;
 int n, ans=0, a, b, exist;
 bool flag;

int main()
{
    S.insert(INF); S.insert(-INF);
    read(n);
    rep(i,1,n) {
        read(a); read(b);
        if (S.size()==2) { // 如果S为空
            exist=a;
            S.insert(b);
        }
        else if (a!=exist) { 
            int l=*--S.lower_bound(b); // 求前驱
            int r=*S.lower_bound(b); // 求后继(奇怪的语法… 不要在意细节)
            if (b-l<=r-b && l>-INF) {
                ans+=(b-l);
                S.erase(l); // set的删除是erase!
            }
            else {
                ans+=(r-b);
                S.erase(r);
            }
            ans%=mod;
        }
        else S.insert(b);
    }
    printf("%d\n", ans);

    return 0;
}

代码二(treap):

// BZOJ 1208 treap

#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <algorithm>
using namespace std;

 #define rep(i,a,b) for (int i=a; i<=b; i++)
 #define read(x) scanf("%d", &x)
 #define mod 1000000
 #define INF 0x7fffffff

 struct Node {
    Node *son[2];
    int v, p, s;
    int cmp(int x) {
        if (x==v) return -1;
        if (x<v) return 0;
        else return 1; 
    }
    void maintain() { s = son[1]->s + son[0]->s + 1; }
 } *root;

 Node *null = new Node();

 void rotate(Node *&o, int d) {
    Node *k = o->son[d^1];
    o->son[d^1] = k->son[d];
    k->son[d] = o;
    o->maintain();
    k->maintain();
    o = k;
 }

 void insert(Node *&o, int x) {
    if (o==null) {
        o = new Node();
        o->v = x; o->p = rand();
        o->son[0] = o->son[1] = null;
    }
    else {
        int d = (x < o->v ? 0 : 1);
        insert(o->son[d], x);
        if (o->son[d]->p > o->p) rotate(o, d^1);
    }
    o->maintain();
 }

 void remove(Node *&o, int x) {
    if (o==null) return;
    int d = o->cmp(x);
    if (d==-1) { // 找到了,准备删
        Node *u = o;
        if (o->son[0] != null && o->son[1] != null) { // 如果两棵子树均不为空
            int d2 = (o->son[0]->p > o->son[1]->p ? 1 : 0); 
            rotate(o, d2); // 将优先级较大的那一棵子树转到根节点上,递归删除
            remove(o->son[d2], x);
        }
        else {
            if (o->son[0] == null) o = o->son[1]; else o = o->son[0];
            delete u;
        }
    } else remove(o->son[d], x); // 递归删除
    if (o!=null) o->maintain(); // 别忘了删完了立即维护信息
 }

 int query_pre(int x) {
    Node *o = root;
    int ret=0;
    while (o!=null) 
        if (o->v < x) {
            ret = o->v;
            o = o->son[1];
        } 
        else o = o->son[0];
    return ret;
 }

 int query_suf(int x) {
    Node *o = root;
    int ret=0;
    while (o!=null) 
        if (o->v > x) {
            ret = o->v;
            o = o->son[0];
        } 
        else o = o->son[1];
    return ret;
 }

 void init() {
    null->s = 0;
    root = null;
    insert(root, INF);
    insert(root, -INF);
 }

int main()
{
    int n=2, ans=0, m, a, b, exist;
    read(m);
    init();
    while (m--) {
        read(a); read(b);
        if (n==2) { insert(root, b); exist=a; n=3; }
        else if (exist==a) { insert(root, b); n++; }
        else {
            int l=query_pre(b), r=query_suf(b);
            if (b-l<=r-b && l!=-INF) {
                ans+=(b-l);
                remove(root, l);
                n--;
            }
            else {
                ans+=(r-b);
                remove(root, r);
                n--;
            }
            ans%=mod;
        }
    }
    printf("%d\n", ans);

    return 0;
}

BZOJ的测试结果显示窝手写的treap比set还慢了4ms... 身败名裂...

转载于:https://www.cnblogs.com/yearwhk/p/5134844.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值