引言
在今天的文章中,我们将探讨一个有趣的算法问题——快乐数。快乐数问题要求我们判断一个给定的正整数是否为快乐数。快乐数的定义是:一个正整数,通过重复将其各个位上的数字的平方和作为新的数,最终能够变为1的数。如果在这个过程中进入了无限循环而始终无法变为1,则该数不是快乐数。我们将使用快慢指针的思想(这里的“指针”是算法概念上的,并非物理指针)来高效地解决这个问题。
leetcode-快乐数
同类题目: leetcode-判断链表是否有环
问题描述
编写一个算法来判断一个数 n 是不是快乐数。
「快乐数」 定义为:
对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。
然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。
如果这个过程 结果为 1,那么这个数就是快乐数。
如果 n 是 快乐数 就返回 true ;不是,则返回 false 。
示例:
示例 1:
输入:n = 19
输出:true
解释:
12 + 92 = 82
82 + 22 = 68
62 + 82 = 100
12 + 02 + 02 = 1
示例 2:
输入:n = 2
输出:false
解释:如下图
解题思路
1.定义快慢“指针”(这里的“指针”是利用了指针的思想,并非指针本身)
2.慢指针每次向后移动一步,快指针每次向后移动两步
3.判断快慢指针相遇时的值是否为1:是:快乐数,否:不是快乐数。
代码实现
以下是使用C++实现的代码示例:
class Solution {
public:
//计算该正整数每个位置上数字的平方和
int bitSum(int n){
int num = 0;
while(n != 0){
num += (n%10)*(n%10);
n/=10;
}
return num;
}
bool isHappy(int n) {
int fast = bitSum(n) , slow = n;
while(fast != slow){
if (fast == 1) return true; // 优化:如果快指针已经到达1,则直接返回true
fast = bitSum(bitSum(fast));
slow = bitSum(slow);
}
return slow==1;
}
};
拓展:鸽巢原理
鸽巢原理,也被称为抽屉原理,是一种常见且基础的数学原理。该原理的基本思想是,如果有n个物体需要放入m个容器中,且n大于m,那么至少有一个容器必须包含两个或更多的物体。这个原理的通俗解释就是“把很多东西装进很小的盒子里,如果盒子比东西少,就必然有些盒子里会塞进去至少两个东西”。
鸽巢原理指出,如果有n+1个物体放入n个鸽巢(或抽屉)中,那么至少有一个鸽巢里含有两个或更多的物体。这里的“鸽子”代表物体,“鸽巢”代表容器或分类。
在本题目中,整数范围最大是2^31-1=2,147,483,647; 这个数字小于9,999,999,999,后者每个位置数字的平方和为810,因此在本题中可能的整数,他的平方和永远≤810,根据鸽巢原理,第811次循环必定会有一个重复的数字,因此本题的“每个位置数字的平方和”的计算不可能出现无限不循环的现象,而是必然会在有限次迭代后陷入循环,因此本题可使用快慢双指针的思想。