Projection Pursuit Regression----读书笔记

The central idea is to extract linear combinations of the inputs as derived features, and then model the target as a nonlinear function of these features. Assume we have an input vector X with p components, and a target Y. Let ωm, m=1,2,...,M, be unit p-vectors of unknown parameters. The projection pursuit regression(PPR) model has the form f(X)=ΣgmmTX). This is an additive model, but in the derived features VmmTX rather than the inputs themselves. The functions gm are unspecified and are estimated along with directions ωm using some flexible smoothing method. The scalar variable VmmTX is the projection of X onto the unit vector ωm, and we seek ωm so that the model fits well, hence the name "projection pursuit." As a result, the PPR model is most usefull for prediction, and not very usefull for producing an understandable model for the data. How do we fit a PPR model, given training data (xi, yi), i=1,2,...,N? We seek the approximate minimizers of the error function

Σi=1N [yim=1MgmmTxi)]2.

转载于:https://www.cnblogs.com/donggongdechen/p/11529082.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值