20162311 实验四-图的实现与应用 实验报告
目录
一、图的实现与应用-1
(一) 实验目的
(二) 实验过程
1.创建VertexNode
类和TripleEdge
类
这两个类分别表示图的顶点和边。
VertexNode
类包含一个int类型变量key,表示顶点序号,T类型变量element,表示该顶点储存的元素。TripleEdge
类包含一个int类型变量isExist,表示这条边是否存在,为0时不存在,为1时不存在;一个int类型变量weight,表示边的权重,初始默认为1。为什么不加上边的开始顶点和结束顶点的序号呢?这个问题在后面解释
2.创建MatrixGraph
类
方法实现
- 构造方法
- size()和isEmpty()
- addVertex(int index,T x)方法
- removeVertex(int i)方法
- insertEdge(int startIndex, int endIndex)方法
- removeEdge(int startIndex, int endIndex)方法
- toString()方法
- iteratorBFS(int startIndex)方法
- iteratorDFS(int startIndex)方法
- getVertex和getEdge方法
构造方法
首先我们用Arraylist来保存顶点,用一个二维数组matrix来保存边,这里解释下之前的为什么不加上边的开始顶点和结束顶点的序号,因为matrix[i][j]就表示序号为i的点到序号为j的点之间的边,因为是无向图,所以在添加matrix[i][j]的同时也要添加matrix[j][i],这个在之后的实现insertEdge()方法时会再讲。然后构造函数先实例化ArrayList和二维数组,数组大小先暂定50
//count变量表示图中顶点的个数
private int count, max;
//表示邻接矩阵的二维数组的初始大小
private final int SIZE = 50;
//保存顶点结点
private ArrayList<VertexNode<T>> vertexList;
//用二维数组表示邻接矩阵
private TripleEdge matrix[][];
//构造函数,初始化保存顶点的列表和表示邻接矩阵的二位数组
public MatrixGraph()
{
vertexList = new ArrayList<>();
matrix = new TripleEdge[SIZE][SIZE];
}
size()和isEmpty()方法
然后先实现最简单的size()和isEmpty()方法,这个就不多解释了
//返回图中顶点个数
public int size()
{
return count;
}
//返回图是否为空
public boolean isEmpty()
{
return (count == 0);
}
addVertex(int index,T x)方法
//添加顶点,index为顺序下标,x为结点元素
public void addVertex(int index,T x)
{
vertexList.add(new VertexNode<>(index,x));
count++;
if(index>=max)
max=index+1;
if(matrix.length == index)
expandCapacity();
for(int i = 0; i< max; i++)
{
if(!(getVertex(i)==null))
{
matrix[index][i] = new TripleEdge();
matrix[i][index] = new TripleEdge();
}
}
}
解释一下上面的代码。传入顶点下标和顶点元素,将其加入vertexlList中,其中有一个max的整型变量,有很重要的作用,和count不同,count在删除顶点时会自减1,而max不会。设置这个max变量也是为了实现后面的方法能够更方便。同时也不是每次都自加1,而是当index>=max时把index加1的值赋给max(因为index从0开始,而max是从1开始)。我这里总体说一下我的构想。假设我们初始化下面这样一个二维数组来表示邻接矩阵,初始长度为50,那么初始化的时候每个元素都是null,表明此时图为空,对应的顶点也为空
接下来我们添加元素,添加第一个元素时,把二维数组matrix[0][0]初始化为new TripleEdge(),就表明下标为0的顶点已经存在了,而此时matrix[0][0]的isExist是0,代表从0到0的边不存在。然后再添加一个顶点也是类似的,添加序号为i的顶点,那么相应的矩阵的第i行和第i列都要置为new TripleEdge()。如果要删除顶点,假设删除顶点的下标为i,那么矩阵的第i行和第i列元素都置为null,这样与之相关的边也删除了。总的来说,每个matrix中的元素都有三种状态(不考虑权重,下同),null表示边和相应的顶点都不存在,0表示顶点存在但是边不存在,1表示两个都存在。接下来我们假设0~4的顶点都添加好了,也添加了一些边,此时的max就是5,如果删去下标为2的顶点,max还是5,此时要再次添加下标为2的顶点,那么max还是5,但如果添加的元素下标是7呢?那此时max就变成8了。我把max理解为我们有效利用二维数组的最大长度。因为当max为5时,后面的行和列都是null,相当于不存在,没有用到。那当我们添加的顶点下标大于50怎么办?,那就要扩容
//对二维数组扩容
private void expandCapacity()
{
TripleEdge larger[][] = new TripleEdge[matrix.length*2][matrix.length*2];
for(int i=0;i<matrix.length;i++)
for (int j=0;j<matrix.length;j++)
larger[i][j] = matrix[i][j];
matrix = larger;
}
扩容之后有一个for循环,有什么用呢?它的作用是初始化边。比如你添加了下标为2的顶点,那么matrix[0][2]~matrix[2][2]和matrix[2][0]~matrix[2][2]的元素都要初始化,但也是有条件的,如果这些元素中有的顶点不存在呢?所以加一个
if(!(getVertex(i)==null))
,这样就可以在其中随意添加和删除顶点了。
removeVertex(int i)方法
//删除下标为index的顶点
public void removeVertex(int index) throws EmptyCollectionException
{
//如果为空,返回异常
if(isEmpty())
throw new EmptyCollectionException("graph");
//如果该顶点不存在,返回异常
else if(getVertex(index) == null)
throw new ElementNotFoundException("graph");
else
{
for (int i = 0; i < vertexList.size(); i++)
if (vertexList.get(i).getKey() == index)
vertexList.remove(i);
//删除顶点后,把与其相关的边置为null
for (int i = 0; i < max; i++)
{
matrix[index][i] = null;
matrix[i][index] = null;
}
count--;
}
}
这个比较简单,在vertexList中找到下标为index的元素,将其删除,然后把与之相关的边置为null,这里的循环就要用到max了。大家可以自己画个矩阵看看为什么是max
insertEdge(int startIndex, int endIndex)方法
//添加从下标为startIndex到下标为endIndex的顶点之间的边
public void insertEdge(int startIndex, int endIndex)
{
matrix[startIndex][endIndex] = new TripleEdge(1);
matrix[endIndex][startIndex] = new TripleEdge(1);
}
这里直接把相应的边初始化,把isExist变量设置为1,就代表边存在了。这里为什么不扩容呢?因为添加边之前肯定要先添加相应的顶点的,而在添加顶点的时候就已经扩容了(如果有必要的话),所以在这里就不需要了
//添加带有权重的边
public void insertEdge(int startIndex, int endIndex, int weight)
{
matrix[startIndex][endIndex] = new TripleEdge(1,weight);
matrix[endIndex][startIndex] = new TripleEdge(1,weight);
}
我还顺便实现了一个添加带有权重的边,不过这个实验用不到,就不多说了
removeEdge(int startIndex, int endIndex)方法
//删除下标为startIndex到下标为endIndex的顶点之间的边
public void removeEdge(int startIndex, int endIndex)
{
if((matrix[startIndex][endIndex] == null)||
(matrix[startIndex][endIndex].getIsExist() == 0))
{
System.out.println("This edge isn't exist!");
}
else
{
matrix[startIndex][endIndex] = new TripleEdge();
matrix[endIndex][startIndex] = new TripleEdge();
}
}
删除的话就把相应的边的isExist置为0,即重新初始化。
toString()方法
//返回图的邻接矩阵表示
public String toString()
{
String result ="顶点下标 ";
for(int i=0;i<max;i++)
if(!(matrix[i][i] == null))
result += i+" ";
result += "\n";
for (int i=0;i<max;i++)
{
if(!(matrix[i][i]==null))
result += " "+i+" ";
for (int j = 0; j < max; j++)
{
TripleEdge edge = matrix[i][j];
if (!(edge == null))
result += edge.getIsExist()*edge.getWeight()+ " ";
}
if (!(matrix[i][max-1] == null))
result += "\n";
}
return result;
}
把邻接矩阵打印出来,遇到为null的不打印,不为null的获取它的isExist*weight的值,我们这里weight默认为1,没什么影响。
iteratorBFS(int startIndex)方法
//返回无向图的广度优先迭代器
public Iterator<T> iteratorBFS(int startIndex)
{
int currentVertex;
LinkedQueue<Integer> traversalQueue = new LinkedQueue<>();
ArrayIterator<T> iter = new ArrayIterator<>();
if(!indexIsValid(startIndex))
return iter;
boolean visited[] = new boolean[max];
for(int i=0;i<max;i++)
visited[i] = false;
traversalQueue.enqueue(startIndex);
visited[startIndex] = true;
while(!traversalQueue.isEmpty()){
currentVertex = traversalQueue.dequeue();
iter.add(getVertex(currentVertex).getElement());
for (int i=0;i<max;i++)
if(!(matrix[currentVertex][i] == null))
if(!visited[i]&&
(matrix[currentVertex][i].getIsExist()==1))
{
traversalQueue.enqueue(i);
visited[i] = true;
}
}
return iter;
}
算法书上已经讲过了,就是按照书上的来,只不过一些if的条件和循环的条件改成了与我写的代码相适应的条件,原理是一样的。其中indexIsValid方法是自己实现的
//判断下标是否有效
private boolean indexIsValid(int index)
{
boolean valid = false;
for(int i=0;i<vertexList.size();i++)
if(vertexList.get(i).getKey()==index)
valid = true;
return valid;
}
iteratorDFS(int startIndex)方法
//返回无向图的深度优先迭代器
public Iterator<T> iteratorDFS(int startIndex)
{
int currentVertex;
LinkedStack<Integer> traversalStack = new LinkedStack<>();
ArrayIterator<T> iter = new ArrayIterator<>();
boolean visited[] = new boolean[max];
boolean found;
if(!indexIsValid(startIndex))
return iter;
for(int i=0;i<max;i++)
visited[i] = false;
iter.add(getVertex(startIndex).getElement());
visited[startIndex] = true;
while (!(iter.size() == count))
{
traversalStack.push(startIndex);
while (!traversalStack.isEmpty())
{
currentVertex = traversalStack.peek();
found = false;
for (int i = 0; i < max && !found; i++)
{
if (!(matrix[currentVertex][i]==null)&&
(matrix[currentVertex][i].getIsExist() == 1) && !visited[i])
{
traversalStack.push(i);
iter.add(getVertex(i).getElement());
visited[i] = true;
found = true;
}
if (!found && !traversalStack.isEmpty())
{
traversalStack.pop();
}
}
}
}
return iter;
}
深度优先同广度优先,也是稍微修改一下书上的代码即可。
getVertex和getEdge方法
在MatrixGraph中我还实现了getVertex和getEdge方法,用来获得顶点和边,比较简单,是用来辅助其他方法实现的
//返回下标为index的顶点,如果图为空,返回EmptyCollectionException
public VertexNode<T> getVertex(int index) throws EmptyCollectionException
{
if(isEmpty())
throw new EmptyCollectionException("graph");
VertexNode<T> result = null;
for (int i=0;i<vertexList.size();i++)
{
if(vertexList.get(i).getKey()==index)
{
result = vertexList.get(i);
}
}
return result;
}
//返回下标为startIndex到下标为endIndex的顶点之间的边
public TripleEdge getEdge(int startIndex, int endIndex)
{
return matrix[startIndex][endIndex];
}
测试截图
(三) 代码链接
二、图的实现与应用-2
(一) 实验目的
(二) 实验过程
1.创建LinkedVertex类和LinkedEdge类
改用十字链表实现无向图,那么顶点类和边类就要重新定义了。按照上图来重新定义,首先是LinkedVertex类。包含顶点下标,顶点元素,入弧和出弧
package ExpFour;
/**
* Created by Administrator on 2017/11/22.
*/
public class LinkedVertex<T>
{
private int key;
private T element;
private LinkedEdge<T> in, out;
public LinkedVertex(int key,T element)
{
this.key = key;
this.element = element;
in = null;
out = null;
}
public int getKey()
{
return key;
}
public void setKey(int key)
{
this.key = key;
}
public T getElement()
{
return element;
}
public void setElement(T element)
{
this.element = element;
}
public LinkedEdge<T> getIn()
{
return in;
}
public void setIn(LinkedEdge<T> in)
{
this.in = in;
}
public LinkedEdge<T> getOut()
{
return out;
}
public void setOut(LinkedEdge<T> out)
{
this.out = out;
}
public String toString()
{
return "("+key+","+element+")";
}
}
然后是LinkedEdge类,包含弧尾下标,弧头下标,同弧头和同弧尾
package ExpFour;
/**
* Created by Administrator on 2017/11/22.
*/
public class LinkedEdge<T>
{
private int headIdx, tailIdx;
private LinkedEdge<T> sameHead, sameTail;
public LinkedEdge(int tailIdx,int headIdx)
{
this.tailIdx = tailIdx;
this.headIdx = headIdx;
sameHead = null;
sameTail = null;
}
public LinkedEdge<T> getSameHead()
{
return sameHead;
}
public int getHeadIdx()
{
return headIdx;
}
public void setHeadIdx(int headIdx)
{
this.headIdx = headIdx;
}
public int getTailIdx()
{
return tailIdx;
}
public void setTailIdx(int tailIdx)
{
this.tailIdx = tailIdx;
}
public void setSameHead(LinkedEdge<T> sameHead)
{
this.sameHead = sameHead;
}
public LinkedEdge<T> getSameTail()
{
return sameTail;
}
public void setSameTail(LinkedEdge<T> sameTail)
{
this.sameTail = sameTail;
}
public String toString()
{
return "( 弧尾序号:"+ tailIdx +",弧头序号:"+ headIdx +")";
}
}
2.创建Linkedgraph类
方法实现
- 构造方法、size()和isEmpty()
- addVertex(int index,T x)方法
- removeVertex(int i)方法
- insertEdge(int startIndex, int endIndex)方法
- removeEdge(int startIndex, int endIndex)方法
- toString()方法
- iteratorBFS(int startIndex)方法和iteratorDFS(int startIndex)方法
构造方法、size()和isEmpty()
这几个比较简单,和之前差不多,就不多说了
public class LinkedGraph<T>
{
private int count;
private ArrayList<LinkedVertex<T>> vertexList;
private ArrayList<LinkedEdge<T>> edgesList;
public LinkedGraph()
{
vertexList = new ArrayList<>();
edgesList = new ArrayList<>();
}
public int size()
{
return count;
}
public boolean isEmpty()
{
return (count == 0);
}
addVertex(int index,T x)方法
这个添加方法比邻接矩阵的简单,直接加到vertexList中即可
//添加下标为index的顶点
public void addVertex(int index,T e)
{
vertexList.add(new LinkedVertex<>(index,e));
count++;
}
removeVertex(int i)方法
原理和之前一样,删除顶点的同时要删除相关的边
//删除下标为index的顶点
public LinkedVertex<T> removeVertex(int index)
{
if(isEmpty())
throw new EmptyCollectionException("graph");
LinkedVertex<T> result = null;
for(int i=0;i<vertexList.size();i++)
if (vertexList.get(i).getKey() == index)
result = vertexList.remove(i);
for(int i=0;i<edgesList.size();i++)
{
LinkedEdge<T> edge = edgesList.get(i);
if((edge.getHeadIdx()==index)||(edge.getTailIdx()==index))
{
edgesList.remove(i);
i--;
}
}
count--;
return result;
}
在edgesList 中找到弧头序号为index或弧尾序号为index的边,将其删除即可
insertEdge(int startIndex, int endIndex)方法
添加边的方法有些不同,添加边后,要找到对应的弧头和弧尾,使其指向这条边。同时,在edgesList中找与其同弧头或同弧尾的边,如果该边的同弧头或同弧尾为空,就指向这条新插入的边。同时,因为是表示无向图,所以用户在添加i到j的边时还要同时添加j到i的边
//插入边
public void insertEdge(int tailIdx,int headIdx)
{
LinkedEdge<T> edge = new LinkedEdge<>(tailIdx,headIdx);
if(!edgesList.isEmpty())
{
for(int i=0;i<edgesList.size();i++)
{
if((edgesList.get(i).getSameHead()==null)&&
(edgesList.get(i).getHeadIdx()==edge.getHeadIdx()))
edge.setSameHead(edgesList.get(i));
if((edgesList.get(i).getSameTail()==null)&&
(edgesList.get(i).getTailIdx()==edge.getTailIdx()))
edge.setSameTail(edgesList.get(i));
}
}
edgesList.add(edge);
for (int i=0;i<vertexList.size();i++)
{
LinkedVertex<T> vertex = vertexList.get(i);
if((vertex.getKey() == headIdx)&&
(vertex.getIn()==null))
{
vertex.setIn(edge);
vertexList.set(i, vertex);
}
if((vertex.getKey() == tailIdx)&&
(vertex.getOut()==null))
{
vertex.setOut(edge);
vertexList.set(i, vertex);
}
}
}
removeEdge(int startIndex, int endIndex)方法
删除边时要同时删除两条,i到j和j到i
//删除边
public void removeEdge(int tailIdx,int headIdx)
{
for (int i = 0; i < edgesList.size(); i++)
{
LinkedEdge<T> edge = edgesList.get(i);
if (((edge.getTailIdx() == tailIdx) && (edge.getHeadIdx() == headIdx))
|| ((edge.getTailIdx() == headIdx) && (edge.getHeadIdx() == tailIdx)))
edgesList.remove(i);
}
}
toString()方法
先打印一个顶点,在该顶点后面打印以该顶点为弧尾的边
//返回图的字符串形式
public String toString()
{
String result = "顶点 以该顶点为弧尾的边\n";
for(int i=0;i<count;i++)
{
LinkedVertex<T> vertex = vertexList.get(i);
result += vertex.toString()+" ";
for(int j=0;j<edgesList.size();j++)
{
LinkedEdge<T> edge = edgesList.get(j);
if(vertex.getKey() == edge.getTailIdx())
{
result += edge.toString()+" ";
}
}
result += "\n";
}
return result;
}
iteratorBFS(int startIndex)方法和iteratorDFS(int startIndex)方法
看似难,其实很简单。和邻接矩阵实现的原理一样,只不过它获得与顶点相连的边的方式不同,也就是把if和for循环的一些条件改一改就行了,代码比较多,就不贴出来了,可以在后面的代码链接里看
3.测试截图
(三) 代码链接
三、图的实现与应用-3
(一) 实验目的
(二) 实验过程
1.分析
其实这是一个最短路径的问题,图类可以不用写了,因为之前已经写好了,而且在邻接矩阵实现的图里我实现了一个添加带权重的边的方法,所以我只需在MatrixGraph类中实现一个获得最短路径的方法就行了。核心算法是Floyd算法,接下来的代码实现都是在MatrixGraph类的基础上做的
2.方法实现
其实老师在课上讲的我并没有完全理解,所以课后我又到网上查了一下Floyd算法的相关内容和一些代码的实现,通过这些参考才完成这个实验
目录
getWeightMatrix()方法
要用Floyd算法,首先要得到这个图的带权矩阵,这个方法就是实现此功能。我之前在第一个实验里说过,MatrixGraph类里有一个二维数组matrix用来存边,但是如果我们对图进行了删除点的操作,那么这个数组里的一些元素是null,不能直接拿来用,所以我需要稍微改一下。
public int[][] getWeightMatrix()
{
int weight[][] = new int[count][count];
int a=0;
for(int i=0;i<max;i++)
{
if (!(getVertex(i)==null))
{
int b=0;
for (int j=0;j<max;j++)
{
if (!(getVertex(j)==null))
{
weight[a][b] = matrix[i][j].getIsExist()*matrix[i][j].getWeight();
b++;
}
}
a++;
}
}
return weight;
}
首先,得到的二维数组是整型,而不是TripleEdge类型;数组的长度是count而不是max或者其它。然后开始循环,对matrix中的元素进行判断,如果它不为null,则把它的isExist*weight得到的值赋给weight[a][b],同时b++;如果matrix中的元素为空,则直接跳过,不进行任何操作,a、b也不会自加1,最终得到的weight就是图的带权二维数组
floyd()方法
这个是最主要的方法,可以得到最短路径和最小权值的矩阵(用数组储存)。用二位数组length存储从i点到j点的最小权重(在这个实验里是最小费用),path是一个三维数组,path[i][j][]中储存从i点到j点经过的顶点,因为可能不止一个,所以也用数组储存。
- 我们先初始化路径,刚开始相连的两个顶点之间的距离就是权重,可以不用改,而一个点到它自己的距离是0,所以data[i][j]为0,然后修改不直接相连的两个顶点间的距离即可。本来应该是无限大,但是data是int类型,不好储存无穷大,所以我用100代替。
- 然后我们初始化spot和onePath数组,我们假定刚开始任意两个点之间没有中间点,没有路径,所以都初始化为-1。这里说以下onePath数组的作用,它是用来储存某两个点之间的路径的,因为路径是用顶点序号表示的,所以为int类型,假设0到3的最短路径是0,1,3,那么onePath就储存0,1,3,然后把onePath数组赋值给path[0][3][],这样就保存了0到3之间的最短路径。然后初始化lenght数组,其实就是把data数组的数据赋值给它
- 通过一个三重循环,找出最小权重,也是利用中间点,如果u到v的距离加上v到w的距离小于u到w的距离,就取小的那个,同时把中间点v存进spot数组
- 得到最短路径
public void floyd()
{
int data[][]=getWeightMatrix();
int MAX = 100;
// 储存中间点
int[][] spot = new int[count][count];
int [] onePath = new int[count];
length = new int[count][count];
path = new int[count][count][];
// 初始化图中两点间的路径
for (int i = 0; i < count; i++)
for (int j = 0; j < count; j++)
{
// 没有路径的两个点之间的路径为默认最大
if (data[i][j] == 0)
data[i][j] = MAX;
if (i == j)
data[i][j] = 0;
}
for (int i = 0; i < count; i++)// 初始化为任意两点之间没有路径
for (int j = 0; j < count; j++)
spot[i][j] = -1;
for (int i = 0; i < count; i++)// 假设任意两点之间的没有路径
onePath[i] = -1;
for (int v = 0; v < count; v++)
for (int w = 0; w < count; w++)
length[v][w] = data[v][w];
for (int u = 0; u < count; u++)
for (int v = 0; v < count; v++)
for (int w = 0; w < count; w++)
// 如果存在更短路径则取更短路径
if (length[v][w] > length[v][u] + length[u][w])
{
length[v][w] = length[v][u] + length[u][w];
spot[v][w] = u;// 把经过的点加入
}
for (int i = 0; i < count; i++)
{// 求出所有的路径
int[] point = new int[1];
for (int j = 0; j < count; j++)
{
point[0] = 0;
onePath[point[0]++] = i;
outputPath(spot, i, j, onePath, point);
path[i][j] = new int[point[0]];
for (int s = 0; s < point[0]; s++)
path[i][j][s] = onePath[s];
}
}
}
getMinWeight()和getMinPath()方法
这两个方法比较简单,直接获取length数组和path数组相应位置的元素就好了
public int getMinWeight(int startIdx,int endIdx)
{
return length[startIdx][endIdx];
}
public String getMinPath(int startIdx,int endIdx)
{
String result = "From " + startIdx + " to " + endIdx + " path is: ";
for (int k = 0; k < path[startIdx][endIdx].length; k++)
result += path[startIdx][endIdx][k] + " ";
return result;
}
其它辅助方法
一个private的方法,用来得到路径
private void outputPath(int[][] spot, int i, int j, int[] onePath, int []point)
{
// 输出i// 到j// 的路径的实际代码,point[]记录一条路径的长度
if (i == j)
return;
if (spot[i][j] == -1)
onePath[point[0]++] = j;
else
{
outputPath(spot, i, spot[i][j], onePath, point);
outputPath(spot, spot[i][j], j, onePath, point);
}
}
测试截图
第一个图是之前做的,只打印出了最小费用的矩阵,所以云班课里之提交了这个。后来补充完整了,加上了最短路径,后面的图是测试结果
(三) 代码链接
四、遇到的问题和解决办法
我感觉本次实验比较特殊,因为前面的数据结构实验,书上都有代码,自己只需补充几个方法就好,但这次基本全是自己写,所以遇到的问题也比较多。因为有很多问题,有大也有小,而且很多是相互关联的,所以我觉得单独写出来不是很好主要是当时遇到太多问题,只想着解决,没有记下来,其实大部分我遇到的问题和解决办法,在写实验过程的时候也或多或少嵌入进去了,所以这里就不单独写了。
五、总结
这次实验主要是自己用代码实现图。前一周课上讲的理论知识,都理解了,而且课上的测试,自己画出几种图,也都没问题,但真正到了自己实现的时候才发现没有那么简单。有很多嘴上说的容易的实现起来却要考虑很多细节。所以,实践是真的很重要,自己动手实践才能更深刻的理解理论。
六、参考资料
除了Floyd算法找了资料以外,其它两个实验本来也想去网上找找资料,但是我看的他们的代码都是比较整体,顶点类、边类、图类是一体的,只能一起照搬,而我又自己定义了顶点类和边类,很难通过修改网上的代码来适应自己的代码,所以就没有再找资料了。除了老师给的PPT以外,没有再参考其它的资料