学习笔记——prufer序列

prufer序列是什么?

百度百科这样说:

Prufer数列是无根树的一种数列。在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2。它可以通过简单的迭代方法计算出来。


与无根树的转换

1.无根树转prufer序列

重复以下步骤直至只剩下两个点:

找到度数为1的且编号最小的节点x,将它所连接的节点加入\(prufer\)序列一次,然后删掉x

2.prufer序列转无根树

准备好一个点集(\({1,2,3,4,....,n}\)

重复以下步骤直至\(prufer\)序列为空:

找到点集中还存在的且在当前的prufer序列中未出现的最小的一个点v,用当前\(prufer\)序列的第一个数\(u\),将\(u\)\(v\)连边,然后删除\(u\)\(v\)

性质

  • 该序列长度为\(n-2\)(废话)

  • 一个度数为\(d_i\)的点会在序列中出现\(d_i-1\)次(它的度从\(d_i\)变成1共加入序列了\(d_i-1\)次)

  • \(prufer\)序列与无根树一一对应,这意味着求无根树的个数等价于求\(prufer\)序列的个数,活生生的将树上问题(误)转换为了序列问题


题目

1.[HNOI2004]树的计数

题意:给定一棵树中每个节点的度数\(d_i\),求满足条件的树的个数,答案不超过\(1e17\)

做法:由上面的性质可知,每个点会在\(prufer\)序列中出现\(d_i-1\)次,求树的个数等价于求序列个数,那么这就变成了一个多重集排列问题,套用公式可得:

\(ans = \frac{(n-2)!}{\prod_{i=1}^n(d_i-1)!}\)

另外此题需要一些特判,如\(\Sigma(d_i-1)\neq n-2\),或者只有一个点,又或者\(d_i=0\),这里不再赘述(虽然已经说完了

由于计算过程中可能炸\(longlong\),需要高精度除法或者分解质因数化除为减

2.[HNOI2008]明明的烦恼

题意:同上,如果给定的\(d_i=-1\),则表示这个点的度数不受限制

做法:设\(cnt\)表示\(d_i\neq-1\)的点的个数,\(sum\)表示\(\Sigma(d_i-1)\)(前提是\(d_i\neq-1\)),于是这些点和上题一样满足(假设\(d_{1-cnt}\)\(\neq -1\)的点):

\(p = \frac{sum!}{\prod_{i=1}^{cnt}(d_i-1)!}\)

由于总共有\(n-2\)个位置,这\(sum\)个位置的选法有\(C_{n-2}^{sum}\)

剩下的\((n-cnt)\)个点可以在剩下的\((n-2-sum)\)个位置出现任意次数,即有\((n-cnt)^{n-sum-2}\)种选择

所以有:

\(ans=C_{n-2}^{sum}*p*(n-cnt)^{n-sum-2}\)

化简可得:

\(ans=\frac{(n-2)!}{(n-2-sum)!\prod(di-1)!}*(n-cnt)^{n-sum-2}\)

用第一题的做法做即可,乘法加法要用高精度

转载于:https://www.cnblogs.com/Chtholly/p/11402692.html

内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)控制律,用于估计系统状态总干扰,并实现简单有效的控制。文章还展示了系统仿真与对比实验,对比了低阶ADRC与传统PID控制器的性能,证明了ADRC在处理系统非线性外部干扰方面的优越性。此外,文章深入分析了参数调整与稳定性,提出了频域稳定性分析b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统主动干扰抑制控制感兴趣的科研人员工程师。 使用场景及目标:①理解电液伺服系统的建模与控制方法;②掌握低阶线性ADRC的设计原理实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真与实验验证,评估不同控制方法的性能;⑤掌握参数调整与稳定性分析技巧,确保控制系统在实际应用中的可靠性鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论技术细节。读者应首先理解电液伺服系统的基本原理ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值