[BZOJ4712]洪水(树链剖分+DP)

题意

给一颗点带权的树,删除一个点需要花费对应的代价,每次询问一颗子树,求最小代价,使得子树的根到不了子树中的任何叶子,支持将单点的权值增加一个正值

思路

\(f[i]\)表示\(i\)子树的答案,\(h[i]\)表示\(i\)的所有儿子的f和,\(w[i]\)表示\(i\)的权值,不难列出状态转移方程:

\(f[i]=min(w[i],h[i])\)

如果\(i\)是叶子,就将它的\(h\)赋成正无穷,可以避免一些讨论

对于修改操作,由于\(w\)只会增加,所以各个数组的值都不会减少
一个显然的情况是,如果一个点的\(f\)值已经等于\(w\),那么无论它的\(h\)怎么增加,它的\(f\)值是不会变的(直到修改它的\(w\)

设修改过程中的某个点的\(f\)值变化了\(delta\),我们将该点对祖先的影响分为三种情况(设父亲为\(fa\)

  1. \(f[fa]==w[fa]\),即修改它的h值对f没有影响,\(h[fa]+=delta,delta=0\),下一步就会\(break\)

  2. \(w[fa]>h[fa],w[fa]>h[fa]+delta\),即加了\(delta\)之后,\(f[fa]\)也会加\(delta\)

  3. \(w[fa]>f[fa],w[fa]\leq h[fa]+delta\),即加了\(delta\)之后,\(f[fa]\)就变为\(w[fa]\)

用树链剖分维护\(min(w-h)\)\(h\),对于修改操作,找到最上面的满足2的点,将这一段路径的\(h\)值加\(delta\),修改父亲节点的\(f\)值(这时父亲节点满足2),求出新的\(delta\)之后递归修改

每多递归一次,说明将一个点改成了2情况,下一次递归到这个点时就会直接\(break\),平均每个点递归\(O(1)\)次,所以递归次数是\(O(n)\)级别的,递归操作用了树链剖分是\(O(log^2n)\)的,所以总时间复杂度为\(O(nlog^2n)\)

Code

#include<bits/stdc++.h>
#define N 200005 
#define Min(x,y) ((x)<(y)?(x):(y))
#define Max(x,y) ((x)>(y)?(x):(y))
using namespace std;
typedef long long ll;
const ll INF = 100000000000000;
int n,m;
int seg[N],rev[N],top[N],dep[N],fa[N],size[N],son[N],hfu;
ll f[N],h[N],w[N];//f[i]=Min(h[i],w[i])
ll minn[N<<2],sign[N<<2];//由于只会询问叶子节点的h值,所以用sign表示 

struct Edge
{
    int next,to;
}edge[N<<1];int head[N],cnt=1;
void add_edge(int from,int to)
{
    edge[++cnt].next=head[from];
    edge[cnt].to=to;
    head[from]=cnt;
}

template <class T>
void read(T &x)
{
    char c;int sign=1;
    while((c=getchar())>'9'||c<'0') if(c=='-') sign=-1; x=c-48;
    while((c=getchar())>='0'&&c<='9') x=x*10+c-48; x*=sign;
}

void dfs1(int rt)
{
    h[rt]=0;
    size[rt]=1;
    dep[rt]=dep[fa[rt]]+1;
    for(int i=head[rt];i;i=edge[i].next)
    {
        int v=edge[i].to;
        if(v==fa[rt]) continue;
        fa[v]=rt;
        dfs1(v);
        
        h[rt]+=f[v];
        size[rt]+=size[v];
        if(size[son[rt]]<size[v]) son[rt]=v;
    }
    if(size[rt]==1) h[rt]=INF;//避免讨论,把叶子赋为INF 
    f[rt]=Min(w[rt],h[rt]);
}
void dfs2(int rt)
{
    if(son[rt])
    {
        seg[son[rt]]=++hfu;
        rev[hfu]=son[rt];
        top[son[rt]]=top[rt];
        dfs2(son[rt]);
    }
    for(int i=head[rt];i;i=edge[i].next)
    {
        int v=edge[i].to;
        if(v==fa[rt]||v==son[rt]) continue;
        seg[v]=++hfu;
        rev[hfu]=v;
        top[v]=v;
        dfs2(v);
    }
}

void pushup(int rt)
{
    minn[rt]=Min(minn[rt<<1],minn[rt<<1|1]);
}
void add_sign(int rt,ll val) 
{
    minn[rt]-=val;
    sign[rt]+=val;
}
void pushdown(int rt)
{
    if(!sign[rt]) return;
    add_sign(rt<<1,sign[rt]);
    add_sign(rt<<1|1,sign[rt]);
    sign[rt]=0;
}
void modify(int rt,int l,int r,int x,int y,ll val)//区间加h 
{
    if(x<=l&&r<=y) return add_sign(rt,val);
    int mid=(l+r)>>1;
    pushdown(rt);
    if(x<=mid) modify(rt<<1,l,mid,x,y,val);
    if(y>mid) modify(rt<<1|1,mid+1,r,x,y,val);
    pushup(rt);
}
void update(int rt,int l,int r,int x)//单点更新
{
    if(l==r)
    {
        minn[rt]=w[rev[l]]-sign[rt];
        return;
    }
    int mid=(l+r)>>1;
    pushdown(rt);
    if(x<=mid) update(rt<<1,l,mid,x);
    else update(rt<<1|1,mid+1,r,x);
    pushup(rt); 
}
ll query_h(int rt,int l,int r,int x)//查询h值 
{
    if(l==r) return sign[rt];
    int mid=(l+r)>>1;
    pushdown(rt);
    if(x<=mid) return query_h(rt<<1,l,mid,x);
    else return query_h(rt<<1|1,mid+1,r,x);
}
ll query_min(int rt,int l,int r,int x,int y,ll det)//找满足minn>det的最左边 
{
    if(x<=l&&r<=y) 
    {
        if(minn[rt]>det) return l;
        if(l==r) return 0; 
    }
    int mid=(l+r)>>1;
    pushdown(rt);
    if(x<=mid&&y<=mid) return query_min(rt<<1,l,mid,x,y,det);
    if(x>mid&&y>mid) return query_min(rt<<1|1,mid+1,r,x,y,det);
    int R=query_min(rt<<1|1,mid+1,r,x,y,det);
    if(!R||R>mid+1) return R;//如果右边已经不行了就不用查左边了 
    int L=query_min(rt<<1,l,mid,x,y,det);//如果直接左右一起查时间复杂度不对 
    return L ? L : R; 
}
void build(int rt,int l,int r)
{
    if(l==r)
    {
        minn[rt]=w[rev[l]]-h[rev[l]];
        sign[rt]=h[rev[l]];
        return;
    }
    int mid=(l+r)>>1;
    build(rt<<1,l,mid);
    build(rt<<1|1,mid+1,r);
    pushup(rt);
}
void modify_edge(int y,ll det)//修改y以上的满足delta < w[i]-h[i]的点 
{
    if(!y||!det) return;
    while(y)
    {
        int c=query_min(1,1,n,seg[top[y]],seg[y],det);//找到最上面的满足条件的 
        if(!c) break; c=rev[c];
        if(c!=top[y])  { modify(1,1,n,seg[c],seg[y],det);y=fa[c];break; }
        modify(1,1,n,seg[top[y]],seg[y],det);
        y=fa[top[y]];
    }
    if(!y) return;
    
    ll t=Min(w[y],query_h(1,1,n,seg[y])),delta;
    modify(1,1,n,seg[y],seg[y],det);
    delta=Min(w[y],query_h(1,1,n,seg[y]))-t;
    modify_edge(fa[y],delta);
}

int main()
{
    read(n);
    for(int i=1;i<=n;++i) read(w[i]);
    for(int i=1;i<n;++i)
    {
        int x,y;
        read(x);read(y);
        add_edge(x,y);
        add_edge(y,x);
    }
    seg[1]=rev[1]=top[1]=hfu=1;
    dfs1(1); dfs2(1);
    
    build(1,1,n);
    read(m);
    while(m--)
    {
        char op[2]; 
        int x; ll val;
        scanf("%s",op); read(x);
        if(op[0]=='Q') printf("%lld\n",Min(w[x],query_h(1,1,n,seg[x])));
        else
        {
            read(val);
            ll now=Min(w[x],query_h(1,1,n,seg[x])),delta;
            w[x]+=val;
            update(1,1,n,seg[x]);
            delta=Min(w[x],query_h(1,1,n,seg[x]))-now;
            modify_edge(fa[x],delta);
        }
    }
    return 0;
}

转载于:https://www.cnblogs.com/Chtholly/p/11583844.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值