这是一道整数划分的题目,用到的算法思想是母函数,当然还有其他的比如递推,DP可以用来解决这道题,关于母函数的思想可以参考http://www.wutianqi.com/?p=596
/*
* Author:lonelycatcher
* problem:hdu 1028
* Type: 母函数,拆分数,整数划分
*/
#include<stdio.h>
#include<string.h>
#include<cstdlib>
#include <iostream>
using namespace std;
int N;
__int64 c1[125];
__int64 c2[125];
int main()
{
setbuf(stdout,NULL);
int i,j,k;
while(scanf("%d",&N)!=EOF)
{
for(i=0;i<=N;i++)
{
c1[i]=1;
c2[i]=0;
}
for(i=2;i<=N;i++)
{
for(j=0;j<=N;j++)
{
for(k=0;k<=N;k+=i)
{
c2[j+k]+=c1[j];
}
}
for(j=0;j<=N;j++)
{
c1[j]=c2[j];c2[j]=0;
}
}
printf("%I64d\n",c1[N]);
}
return 0;
}
第二种方法:递推
转自http://blog.sina.com.cn/s/blog_677a3eb30100kqnn.html
经典题,递推递归。
首先,我们引进一个小小概念来方便描述吧,record[n][m]是把自然数划划分成所有元素不大于m的分法,例如:
当n=4,m=1时,要求所有的元素都比m小,所以划分法只有1种:{1,1,1,1};
当n=4,m=2时,。。。。。。。。。。。。。。。。只有3种{1,1,1,1},{2,1,1},{2,2};
当n=4,m=3时,。。。。。。。。。。。。。。。。只有4种{1,1,1,1},{2,1,1},{2,2},{3,1};
当n=4,m=5时,。。。。。。。。。。。。。。。。只有5种{1,1,1,1},{2,1,1},{2,2},{3,1},{4};
从上面我们可以发现:当n==1||m==1时,只有一种分法;
当n<m时,由于分法不可能出现负数,所以record[n][m]=record[n][n];
当n==m时,那么就得分析是否要分出m这一个数,如果要分那就只有一种{m},要是不分,那就是把n分成不大于m-1的若干份;即record[n][n]=1+record[n][n-1];
当n>m时,那么就得分析是否要分出m这一个数,如果要分那就{{m},{x1,x2,x3..}}时n-m的分法record[n-m][m],要是不分,那就是把n分成不大于m-1的若干份;即record[n][n]=record[n-m][m]+record[n][m-1];
那么其递归式:
//dp[i][j]将整数i划分为最大不超过j的
#include<iostream>
using namespace std;
#define maxn 121
int dp[maxn][maxn]={0};
int main()
{
int i,j;
for(i=1;i<=121;i++)dp[1][i]=dp[i][1]=1;
for(i=2;i<121;i++)
{
for(j=2;j<=121;j++)
{
if(i<j) dp[i][j]=dp[i][i];
else if(i==j)dp[i][j]=1+dp[i][j-1];
else if(i>j) dp[i][j]=dp[i-j][j]+dp[i][j-1];
}
}
int n;
while(scanf("%d",&n)!=EOF)printf("%d\n",dp[n][n]);
return 0;
}