牧场的安排
内存限制:512 MiB
时间限制:1000 ms
原题来自:USACO 2006 Nov. Gold
Farmer John 新买了一块长方形的牧场,这块牧场被划分成 MMM 行 NNN 列 (1≤M≤12;1≤N≤12),每一格都是一块正方形的土地。FJ 打算在牧场上的某几格土地里种上美味的草,供他的奶牛们享用。遗憾的是,有些土地相当的贫瘠,不能用来放牧。并且,奶牛们喜欢独占一块草地,于是 FJ 不会选择两块相邻的土地,即:没有哪两块草地有公共边。当然,FJ 还没有决定在哪些土地上种草。
作为一个好奇的农场主,FJ 想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择。当然,把新的牧场荒废,不在任何土地上种草,也算一种方案。请你帮 FJ 算一下这个总方案数。
输入格式
第 111 行:两个正整数 MMM 和 NNN,用空格隔开;
第 222 到 M+1M+1M+1 行:每行包含 NNN 个用空格隔开的整数,描述了每块土地的状态。输入的第 i+1i+1i+1 行描述了第 iii 行的土地。所有整数均为 000 或 111,111 表示这块土地足够肥沃,000 则表示这块地上不适合种草。
输出格式
第 111 行:输出一个整数,即牧场分配总方案数除以 10810^8108 的余数。
样例
样例输入
2 3
1 1 1
0 1 0
样例输出
9
--------------------------------------------------------------------------------------------------
状态压缩动态规划
首先处理出所有行的复合要求的养牛的状态,
(s&cd[i])==s && (s&(s<<1))==0,也就是当前养牛的场地都在有草的地方且养牛的地点不相邻
让后状压动归,f[i][s]表示到第i行,且第i行的状态为s的情况下有多少种方案。
f[i][s]+=f[i-1][ss],条件s和ss都是对应的行内的合法状态,且两者之间的关系合法,也就是s&ss==0
--------------------------------------------------------------------------------------------------
1 #include<bits/stdc++.h> 2 using namespace std; 3 typedef long long ll; 4 int n,m; 5 vector<int>st[14]; 6 int cd[14]; 7 ll f[14][(1<<12)+5]; 8 9 void getst() 10 { 11 st[0].push_back(0); 12 for(int i=1;i<=n;++i) 13 { 14 for(int s=0;s<(1<<m);s++) 15 { 16 if((s&cd[i])==s && (s&(s<<1))==0)st[i].push_back(s); 17 } 18 } 19 } 20 void dp() 21 { 22 f[0][0]=1; 23 for(int i=1;i<=n;++i) 24 { 25 for(int s=0;s<st[i].size();++s) 26 { 27 for(int ss=0;ss<st[i-1].size();ss++) 28 if((st[i][s]&st[i-1][ss])==0) 29 f[i][st[i][s]]=(f[i][st[i][s]]+f[i-1][st[i-1][ss]])%100000000; 30 } 31 } 32 } 33 int main() 34 { 35 scanf("%d%d",&n,&m); 36 for(int i=1;i<=n;++i) 37 { 38 int tp; 39 for(int j=0;j<m;++j) 40 { 41 scanf("%d",&tp); 42 cd[i]=(cd[i]<<1)|tp; 43 } 44 } 45 getst(); 46 dp(); 47 long long ans=0; 48 for(int s=0;s<st[n].size();++s)ans+=f[n][st[n][s]],ans%=100000000; 49 cout<<ans; 50 return 0; 51 }