word to vector 文本向量化

现在趋势是高层用可解释的模型例如 线性模型或者gbdt,下层用带深度的embedding。

文本向量化的 word 2 vector 很不错也有很多自己做得模型,关键在于语聊,模型效果差异不大。


这里有训练好的模型,30种语言非英语,感觉语料不是很好

https://github.com/Kyubyong/wordvectors


这个项目里面有英文预料的,英文有很多语料库例如wordbank google news,wallstreet,都是很好的语聊库。

https://github.com/3Top/word2vec-api


我们当然用我厂自家的模型。


下面是另一片综述的文章。


http://ahogrammer.com/2017/01/20/the-list-of-pretrained-word-embeddings/

https://www.tensorflow.org/tutorials/word2vec

posted on 2017-11-10 12:52 一匡互联网 阅读( ...) 评论( ...) 编辑 收藏

转载于:https://www.cnblogs.com/binbinbj/p/7814048.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值