POJ2686 Traveling by Stagecoach(状压DP)

题意:

有一个旅行家计划乘马车旅行。他所在的国家里共有m个城市,在城市之间有若干道路相连。从某个城市沿着某条道路到相邻的城市需要乘坐马车。而乘坐马车需要使用车票,每用一张车票只可以通过一条道路。每张车票上都记有马的匹数,从一个城市移动到另一个城市的所需时间等于城市之间道路的长度除以马的数量的结果。这位旅行家一共有n张车票,第i张车票上马的匹数是ti。一张车票只能使用一次,并且换乘所需要的时间可以忽略。求从城市a到城市b所需要的最短时间。如果无法到达城市b则输出”Impossible”。

分析:

一道经典的状态压缩DP,例如当前状态为“现在在城市V,此时还剩下的车票集合为S".从此状态出发,使用一张在S集合里面的车票i ,就可以转移到城市U".

dp[S][v]含义:旅行家还剩余的马车票组成集合S,并且已到达城市v的时候所花的时间总和。若目前已到达城市v,且马车票组成的集合为S,此时使用集合S中的第i张马车票到达城市u,那么状态转移过程可以表示为:
dp[S&~(1<<i)][u]=min{dp[S&~(1<<i)][u],dp[s][v]+d[s][v]/t[i]};
AC
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 1 << 10;
const int maxm = 31;
const int INF = 1 << 29;

int n, m, p, a, b;
int t[maxm];
int d[maxm][maxm];   //图的邻接矩阵表示(-1表示没有边)
double dp[maxn][maxm];
//dp[S][v] := 到达剩下的车票集合为S并且现在在城市v的状态所需要的最小花费
void so()
{
    for (int i = 0; i < (1 << n); i++)
        fill(dp[i], dp[i] + m + 1, INF);    //用足够大的值初始化

    dp[(1 << n) - 1][a] = 0;
    double res = INF;
    for (int i = (1 << n) - 1; i >= 0; i--){//枚举票的状态
        for (int u = 1; u <= m; u++){//起点u
            for (int j = 0; j < n; j++){//枚举每种票的情况
                if (i & (1 << j)){//当前票的状态中有第j票
                    for (int v = 1; v <= m; v++){//枚举可以去到的城市
                        if (d[v][u]){
                            //使用车票i,从v移动到u
                            dp[i & ~(1 << j)][v] = min(dp[i & ~(1 << j)][v], dp[i][u] + (double)d[u][v] / t[j]);
                        }
                    }
                }
            }
        }
    }
    for (int i = 0; i < (1 << n); i++)
        res = min(res, dp[i][b]);
    if (res == INF)
        //无法到达
        printf("Impossible\n");
    else
        printf("%.3f\n", res);

}
int main( )
{

   while(scanf("%d%d%d%d%d",&n,&m,&p,&a,&b)!=EOF)
   {
       if(n==0&&m==0)
        break;
       memset(d,0,sizeof(d));
       for(int i=0 ; i<n ; i++)
       scanf("%d",&t[i]);
       while(p--)
       {
           int u,v,w;
           scanf("%d%d%d",&u,&v,&w);
           d[v][u]=d[u][v]=w;
       }
       so( );
   }
   return 0;
}
View Code

 

转载于:https://www.cnblogs.com/shuaihui520/p/9147085.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值