Django 模型层—单表操作
一、数据库相关设置
若想将模型转为mysql数据库中的表,需要在settings中配置
# Mysql连接配置
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.mysql',
'NAME': 'lxx',
'USER': 'root',
'PASSWORD': '123',
'HOST': '127.0.0.1',
'PORT': 3306,
'ATOMIC_REQUEST': True,
'OPTIONS': {
"init_command": "SET storage_engine=MyISAM",
}
}
}
'''
'NAME':要连接的数据库,连接前需要创建好
'USER':连接数据库的用户名
'PASSWORD':连接数据库的密码
'HOST':连接主机,默认本机
'PORT':端口 默认3306
'ATOMIC_REQUEST': True,
设置为True统一个http请求对应的所有sql都放在一个事务中执行(要么所有都成功,要么所有都失败)。
是全局性的配置, 如果要对某个http请求放水(然后自定义事务),可以用non_atomic_requests修饰器
'OPTIONS': {
"init_command": "SET storage_engine=MyISAM",
}
设置创建表的存储引擎为MyISAM,INNODB
'''
在models中通过类建立我们自己需要用的数据库表
class User(models.Model):
id = models.AutoField(primary_key=True)
name = models.CharField(max_length=16)
age = models.IntegerField()
birthday = models.DateField()
注意1:NAME即数据库的名字,在mysql连接前该数据库必须已经创建,而上面的sqlite数据库下的db.sqlite3则是项目自动创建 USER和PASSWORD分别是数据库的用户名和密码。设置完后,再启动我们的Django项目前,我们需要激活我们的mysql。然后,启动项目,会报错:no module named MySQLdb 。这是因为django默认你导入的驱动是MySQLdb,可是MySQLdb 对于py3有很大问题,所以我们需要的驱动是PyMySQL 所以,我们只需要找到项目名文件下的__init__,在里面写入
import pymysql
pymysql.install_as_MySQLdb()
最后通过两条数据库迁移命令即可在指定的数据库中创建表 :
python manage.py makemigrations
python manage.py migrate
配置ORM的loggers日志(可以打印orm转换过程中的sql)
LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'handlers': {
'console': {
'level': 'DEBUG',
'class': 'logging.StreamHandler',
},
},
'loggers': {
'django.db.backends': {
'handlers': ['console'],
'propagate': True,
'level': 'DEBUG',
},
}
}
在进行数据库的单表操作前需要导入一些相关模块,
import os
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "dg68_1.settings")
# 直接导入django,可以查看并运用jdango包相关模块, 但无法使用用django创建的项目中的模块
import django
django.setup()
# from django.db import models
from appo.models import User
二、简单的增删查改
1、增
方式一:
user = User.objects.create(name='egon',age=18,birthday='2010-3-8')
方式二:
u1 = User(name='egon',age=18,birthday='2010-3-8')
ul.save()
2、查
#操作结果拥有一个list
u_list= User.objects.filter(name='egon')
#只能操作有且仅有一条数据的记录
try:
u2 = User.objects.get(name="egon")
print(u2)
except Exception:
print("egon 对象不唯一")
3、改
User.objects.filter(name='Owen').update(name='Owen_best')
users = User.objects.filter(name='Owen_best')
for user in users:
user.name = 'Owen'
user.save()
4、删
User.objects.filter(id=3).delete()
u4 = User.objects.filter(id=1)[0]
u4.delete()
三、单表操作的函数
<1> all(): 查询所有结果
<2> filter(**kwargs): 它包含了与所给筛选条件相匹配的对象
<3> get(**kwargs): 返回与所给筛选条件相匹配的对象,返回结果有且只有一个,如果符合筛选条件的对象超过一个或者没有都会抛出错误。
<4> exclude(**kwargs): 它包含了与所给筛选条件不匹配的对象
<5> order_by(*field): 对查询结果排序('-id')
<6> reverse(): 对查询结果反向排序
<8> count(): 返回数据库中匹配查询(QuerySet)的对象数量。
<9> first(): 返回第一条记录
<10> last(): 返回最后一条记录
<11> exists(): 如果QuerySet包含数据,就返回True,否则返回False
<12> values(*field): 返回一个ValueQuerySet——一个特殊的QuerySet,运行后得到的并 不是一系列,model的实例化对象,而是一个可迭代的字典序列
<13> values_list(*field): 它与values()非常相似,它返回的是一个元组序列,values返回的 是一个字典序列
<14> distinct(): 从返回结果中剔除重复纪录
1. all():查询所有结果list,支持正向索引取值[i],支持索引切片[m:n]
user_list = User.objects.all()
print(type(user_list))
print(user_list)
QuerySet对象都有query属性,里面存放的的是得到该结果执行的sql语句(ORM内部还存在对sql语句的优化)
print(user_list.query)
支持正向所有(不支持反向索引,原因是数据过多时,不能将数据一次性查出,需要分批次按需求查出)
u5 = User.objects.all()[0]
print(u5)
支持切片
u_l1 = User.objects.all()[1:3]
print(u_l1)
print(u_l1.query)
2. exclude(**kwargs):查询满足条件的对立面的所有结果list
u_l2 = User.objects.exclude(id=1)
print(u_l2)
print(u_l2.query)
3. order_by(*field):查询按照指定字段进行排序后的所有结果list,'tag_name'代表正序,'-tag_name'代表降序
u_l3 = User.objects.order_by('-id')
print(u_l3)
print(u_l3.query)
4. reverse():反转排序查询的所有结果list
u_l4 = User.objects.order_by('id').reverse()
print(u_l4)
print(u_l4.query)
5. count():统计返回查询结果list的长度
count = User.objects.all().count()
print(count)
6. exists():判断查询结果是否存在,值为布尔类型
res = User.objects.filter(id=10).exists()
print(res)
7. values(*field):按照指定字段(们)进行查询,返回存放包含字段(们)的字典的列表list
u_l5_dic = User.objects.values('name', 'age')[1:3]
# print(u_l5_dic.query)
print(u_l5_dic)
8. values_list(*field):同values类似,返回存放数据的元组的列表list
u_l6_dic = User.objects.values_list('name', 'age')[1:3] # [0][1] 第一个元组中的第二个数据,年龄
print(u_l6_dic)
9. distinct():从查询结果中剔除重复字段(一般和values结合使用)
u_l7 = User.objects.values('name', 'age', 'birthday').distinct()
print(u_l7)
四、模糊查询(基于双下划线)
u8 = User.objects.filter(id__exact=1) # 就是id=1的精确查询
print(u8)
print(u8.query)
# 整型相关
age__exact=8 # 确切匹配8
age__in=[8, 10] # 8或10
age__gt=8 # 大于8
age__gte=8 # 大于等于8
age__lt=8 # 小于8
age__lte=8 # 小于等于8
age__range=[8, 10] # 8到10之间
age__isnull=0|1 # 0:is not null | 1:is null
# 字符串相关
name__startswith # 后方模糊匹配
name__endswith # 前方模糊匹配
name__contains # 前后方均模糊匹配
name__regex # 正则匹配
name__istartswith # 不区分大小写后方模糊匹配(i开头就是不区分大小写)
# 时间相关
birthday__year=2008 # 时间年份模糊匹配
五、F查询(基于计算)
from django.db.models import F
案例一:将id为1的结果年龄增加1
u10 = User.objects.filter(id=1).first()
print(u10)
u10.age += 1
u10.save()
User.objects.filter(id=1).update(age=age+1) # update不能完成二步操作
User.objects.filter(id=1).update(age=F('age')+1)
User.objects.filter(id=1).values('age')
案例二:查询id是年龄1/20的结果
res_list = User.objects.filter(id=F('age')/20)
User.objects.values('age')
print(res_list)
六、Q查询
from django.db.models import Q
# & | ~
u_l20 = User.objects.filter(name__iregex="xiaohou", age=18) # 默认就是 与关系 &
print(u_l20)
# 需求:年纪<20 或 姓名包含a
u_l21 = User.objects.filter(Q(age__lt=20) | Q(name__icontains='a'))
print(u_l21)
# 需求:年纪大于20
u_l22 = User.objects.filter(~Q(age__lte=20))
print(u_l22)
补:
删除表纪录
删除方法就是 delete()。它运行时立即删除对象而不返回任何值。例如:
model_obj.delete()
你也可以一次性删除多个对象。每个 QuerySet 都有一个 delete() 方法,它一次性删除 QuerySet 中所有的对象。
例如,下面的代码将删除 pub_date 是2005年的 Entry 对象:
Entry.objects.filter(pub_date__year=2005).delete()
在 Django 删除对象时,会模仿 SQL 约束 ON DELETE CASCADE 的行为,换句话说,删除一个对象时也会删除与它相关联的外键对象。例如:
b = Blog.objects.get(pk=1)
# This will delete the Blog and all of its Entry objects.
b.delete()
要注意的是: delete() 方法是 QuerySet 上的方法,但并不适用于 Manager 本身。这是一种保护机制,是为了避免意外地调用 Entry.objects.delete() 方法导致 所有的 记录被误删除。如果你确认要删除所有的对象,那么你必须显式地调用:
Entry.objects.all().delete()
如果不想级联删除,可以设置为:
pubHouse = models.ForeignKey(to='Publisher', on_delete=models.SET_NULL, blank=True, null=True)
修改表纪录
Book.objects.filter(title__startswith="py").update(price=120
此外,update()方法对于任何结果集(QuerySet)均有效,这意味着你可以同时更新多条记录update()方法会返回一个整型数值,表示受影响的记录条数