http://acm.hdu.edu.cn/showproblem.php?pid=4038
这题的题意就是给一序列的数,有两种操作,一种是把序列中某个数的值加1,要么在序列中增添一个数为1,然后给出操作数,最后要求这些数的乘积最大,求出这个乘积。
做这个题要考虑的细节很多,首先要把负数的个数求出,如果为奇数,那么要把最大的那个负数尽量加到0,就相当于转化为偶数的情况了,然后负数就不用在管了,这时候,序列中如果有0的话,很显然他们相乘就是0,所以尽量把所有的0要变成1,之后,如果操作数还有剩余,就要尽量把所有的1变成2了,因为1在序列中是没有任何用处的,增加到2就是翻一番,用1个操作数达到这种效果是最划算的,之后如果操作数还有剩余,再把所有的2变成3,因为两个操作可以在序列中新增添一个2,也可以将两个2变为两个3,这样分析一下,明显是把两个2变为两个3更为划算,一个操作的时候显然也是把2变为3更划算,之后,如果操作数还有剩余,那么,当操作数为1的时候,很显然是加到最小的那个正数上比较划算,但是操作数大于1的时候,我们可以假设序列中有很多个3,那么3+1所获得的增幅是4/3,那么我们可以比较在序列中新增一个数和把这么些个3加1所造成的增幅,可以发现,2,3,4,5,6的时候在序列中新增一个数所造成的增幅是大于在3的基础上加1的,而且,所有数是可以被2和3以加法形式组成的,例如6=3+3,很明显,6拆成3和3所造成的增幅要比自己靠谱,所以我们尽量把操作数拆分为2或者3,但是是谁更优先呢? 我们可以发先,如果3*a=2*b,那么3^a一定大于2^b,所以,最优先的应该是3,所以,我们应该尽量往序列中加3,然后再加2,使3*a+2*b=操作数。代码如下
#include<stdio.h>
#define N 100010
const __int64 max=99999999;
__int64 a[N];
const __int64 mod=(__int64)1000000007;
__int64 exp(__int64 a,__int64 num,__int64 mod)
{
if(num==0)return 1%mod;
if(num%2==0)
{
__int64 x=exp(a,num/2,mod);
return (x%mod)*x%mod;
}
else
{
__int64 x=exp(a,(num-1)/2,mod);
return ((x%mod)*a%mod)*x%mod;
}
}
int main()
{
int T,l,i,j;
__int64 min,sum,three,two,n,m,k,k2;
scanf("%d",&T);
for(l=1;l<=T;l++)
{
scanf("%I64d%I64d",&n,&m);
sum=0;
min=-max;
three=0;
two=0;
for(i=1;i<=n;i++)
{
scanf("%I64d",&a[i]);
if(a[i]<0)
{sum++;
if(a[i]>min){min=a[i];k=i;}
}
}
if(sum%2)
{
if(min+m>0)
{
m+=min;
a[k]=0;
}
else
{
a[k]+=m;
m=0;
}
}
if(m>0)
{
for(i=1;i<=n;i++)
{
if(a[i]==0)
{
if(m>0)
{
a[i]++;
m--;
}
else break;
}
}
}
if(m>0)
{
for(i=1;i<=n;i++)
{
if(a[i]==1)
{
if(m>0)
{
a[i]++;
m--;
}
else break;
}
}
}
if(m>0)
{
for(i=1;i<=n;i++)
{
if(a[i]==2)
{
if(m>0)
{
a[i]++;
m--;
}
else break;
}
}
}
if(m>0)
{
min=max;
for(i=1;i<=n;i++)
{
if(min>a[i])
{
min=a[i];
k2=i;
}
}
if(m%3==0)
{
three+=m/3;
}
else
{
if(m%3==1)
{
if(m==1)
{
a[k2]++;
m--;
}
else
{
three+=m/3-1;//两个2比一个3和1要大
two+=2;
m=0;
}
}
else
{
if(m%3==2)
{
three+=m/3;
two++;
m=0;
}
}
}
}
__int64 temp=1;
for(i=1;i<=n;i++)
{
temp=temp*a[i]%mod;
}
__int64 sum1=exp((__int64 )3,three,mod);
__int64 sum2=exp((__int64 )2,two,mod);
temp=temp*sum1%mod*sum2%mod;
printf("Case %d: %I64d\n",l,temp%mod);
}
}