---来源百度
1表示它吃根结点,
2表示它被根结点吃。
判断两个点a, b的关系,我们令p = Find(a), q = Find(b),即p, q分别为a, b子树的根结点。
1. 如果p != q,说明a, b暂时没有关系,那么关于他们的判断都是正确的,然后合并这两个子树。这里是
关键,如何合并两个子树使得合并后的新树能保证正确呢?这里我们规定只能p合并到q(刚才说过了,启发式合并的优化效果并不那么明显,如果我们用启发式合并,就要推出两个式子,
而这个推式子是件比较累的活...所以一般我们都规定一个子树合到另一个子树)。
那么合并后,p的relation肯定要改变,那么改成多少呢?
这里的方法就是找规律,列出部分可能的情况,就差不多能推出式子了。这里式子为:
tree[p].relation = (tree[b].relation - tree[a].relation + 2 + d) % 3; 这里的d为判断语句中a, b的关系。
还有个问题,我们是否需要遍历整个a子树并更新每个结点的状态呢?
答案是不需要的,因为我们可以在Find()函数稍微修改,即结点x继承它的父亲(注意是前父亲,因为路径压缩后父亲就会改变),
即它会继承到p结点的改变,所以我们不需要每个都遍历过去更新。
2. 如果p = q,说明a, b之前已经有关系了。那么我们就判断语句是否是对的,同样找规律推出式子。
即if ( (tree[b].relation + d + 2) % 3 != tree[a].relation ), 那么这句话就是错误的。
3. 再对Find()函数进行些修改,即在路径压缩前纪录前父亲是谁,
然后路径压缩后,更新该点的状态(通过继承前父亲的状态,这时候前父亲的状态是已经更新的)。
//#include<bits/stdc++.h>
//using namespace std;
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int N=5e4+10;
int pre[N];
int val[N];
int n,m,ans;
int Find(int x)
{
if(x==pre[x])
return x;
int tmp=pre[x];
pre[x]=Find(tmp);
val[x]=(val[x]+val[tmp])%3;
return pre[x];
}
void Merge(int x,int y,int k)
{
int xx=Find(x);
int yy=Find(y);
if(xx==yy)
{
if(k==2&&(val[y]+k+2)%3!=val[x])
ans++;
if(k==1&&val[x]!=val[y])
ans++;
}
else
{
pre[xx]=yy;
val[xx]=(val[y]-val[x]+2+k)%3;
}
}
int main()
{
int temp,x,y;
scanf("%d%d",&n,&m);
ans=0;
for(int i=1;i<=n;i++)
{
pre[i]=i;
val[i]=0;
}
while(m--)
{
scanf("%d%d%d",&temp,&x,&y);
if((x>n||y>n)||(temp==2&&x==y)){
ans++;
continue;
}
Merge(x,y,temp);
}
printf("%d\n",ans);
return 0;
}
然后了解了一下启发式合并,无语。。就是一个智力活。。。
直观感觉就是哪个好我咋合并.
难点就是构造关系(权值):
元素与元素之间关系的转化。
父子结点间关系的转化。