开始还是挺好想的,就是求前缀和的前缀和
令SSS表示前缀和,则
ans=∑k=lr∑i=kn(Sk−Si−k)ans=\sum_{k=l}^{r}\sum_{i=k}^n(S_k-S_{i-k})ans=k=l∑ri=k∑n(Sk−Si−k)
=∑k=lr(∑i=knSi−∑i=0n−kSi)=\sum_{k=l}^{r}(\sum_{i=k}^{n}S_i-\sum_{i=0}^{n-k}S_i)=k=l∑r(i=k∑nSi−i=0∑n−kSi)
令SSSSSS表示SSS的前缀和
则
ans=∑k=lr(SSn−SSk−1−SSn−k)ans=\sum_{k=l}^{r}(SS_n-SS_{k-1}-SS_{n-k})ans=k=l∑r(SSn−SSk−1−SSn−k)
=(r−l+1)SSn−∑i=l−1r−1SSi−∑i=n−ln−rSSi=(r-l+1)SS_n-\sum_{i=l-1}^{r-1}SS_i-\sum_{i=n-l}^{n-r}SS_i=(r−l+1)SSn−i=l−1∑r−1SSi−i=n−l∑n−rSSi
发现我们只需要维护一个SSSSSS的区间和
再考虑一次修改对答案的影响
若i∈[l,r]i\in[l,r]i∈[l,r]
则SSi+=(i−l+1)∗(i−l+2)2∗kSS_i+=\frac{(i-l+1)*(i-l+2)}{2}*kSSi+=2(i−l+1)∗(i−l+2)∗k
若i∈[r+1,n]i\in [r+1,n]i∈[r+1,n]
则SSi+=(len∗(len+1)2+len∗(i−r))∗kSS_i+=(\frac{len*(len+1)}{2}+len*(i-r))*kSSi+=(2len∗(len+1)+len∗(i−r))∗k
拆开后发现是一个二次函数ai2+bi+cai^2+bi+cai2+bi+c的形式,可以维护一下一次修改的a,b,ca,b,ca,b,c
用线段树就可以了
注意有除法,可以先不除2,把所有乘2,最后再乘一个逆元就可以了
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define int long long
inline int read(){
char ch=getchar();
int res=0,f=1;
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=getchar();
return res*f;
}
const int N=200005;
const ll mod=1e9+7;
const ll inv2=5e8+4;
int n,m;
ll ss[N],f1[N],f2[N],a[N<<2],b[N<<2],c[N<<2],tr[N<<2];
#define lc (u<<1)
#define rc ((u<<1)|1)
#define mid ((l+r)>>1)
inline void pushup(int u){
tr[u]=(tr[lc]+tr[rc])%mod;
}
inline void pushnow(int u,int l,int r,ll a1,ll b1,ll c1){
(a[u]+=a1)%=mod,(b[u]+=b1)%=mod,(c[u]+=c1)%=mod;
(tr[u]+=(a1*(f2[r]-f2[l-1])%mod)+b1*(f1[r]-f1[l-1])%mod+c1*(r-l+1)%mod)%=mod;
}
inline void pushdown(int u,int l,int r){
if(!a[u]&&!b[u]&&!c[u])return;
pushnow(lc,l,mid,a[u],b[u],c[u]);
pushnow(rc,mid+1,r,a[u],b[u],c[u]);
a[u]=b[u]=c[u]=0;
}
void build(int u,int l,int r){
if(l==r){tr[u]=ss[l];return;}
build(lc,l,mid),build(rc,mid+1,r);
pushup(u);
}
void update(int u,int l,int r,int st,int des,ll a1,ll b1,ll c1){
if(st<=l&&r<=des){pushnow(u,l,r,a1,b1,c1);return;}
pushdown(u,l,r);
if(st<=mid)update(lc,l,mid,st,des,a1,b1,c1);
if(mid<des)update(rc,mid+1,r,st,des,a1,b1,c1);
pushup(u);
}
ll query(int u,int l,int r,int st,int des){
if(st<=l&&r<=des)return tr[u];
ll res=0;pushdown(u,l,r);
if(st<=mid)res+=query(lc,l,mid,st,des);
if(mid<des)res+=query(rc,mid+1,r,st,des);
pushup(u);
return res%mod;
}
inline void modify(int l,int r,ll k){
if(l>r)swap(l,r);
ll a1=k,b1=(3-2*l+mod)%mod*k%mod,c1=((l*l%mod-3*l+2)%mod+mod)%mod*k%mod;
update(1,0,n,l,r,a1,b1,c1);
if(r==n)return;//
ll len=r-l+1;
a1=0,b1=len*k*2%mod,c1=(len*(len+1-2*r)%mod+mod)%mod*k%mod;
update(1,0,n,r+1,n,a1,b1,c1);
}
inline ll ask(int l,int r){
ll res=((1ll*(r-l+1)*query(1,0,n,n,n)%mod-query(1,0,n,l-1,r-1)-query(1,0,n,n-r,n-l))%mod+mod)%mod;
return res*inv2%mod;
}
signed main(){
n=read(),m=read();
for(int i=1;i<=n;i++)(ss[i]=ss[i-1]+read())%=mod;
for(int i=1;i<=n;i++)(ss[i]+=ss[i-1])%mod;
for(int i=1;i<=n;i++)(ss[i]*=2)%=mod,f1[i]=(f1[i-1]+i)%mod,f2[i]=(f2[i-1]+1ll*i*i%mod)%mod;
build(1,0,n);
while(m--){
int op=read();
int l=read(),r=read();
if(op==1)modify(l,r,read());
else cout<<ask(l,r)<<'\n';
}
}