给出两个字符串\(\{a_i\},\{b_i\}\),长度分别为\(n,m\),有q个询问,每次询问长度恰好为x的a串中的位置数量,保证以该位置为开头的前缀与\(\{b_i\}\)匹配长度恰好为\(x,1≤n,m,q,x≤200000\)。
解
匹配问题,考虑kmp,不妨利用kmp,求出串a的f数组,求出串b的next数组,接下来是玄学操作,我也不能体现思维过程了。
首先记一个\(cnt[i]\)表示长度为至少i的满足题意的位置个数,只要求出这个每次询问x,我们只要回答\(cnt[x]-cnt[x+1]\),自然想到给每个i,都来一次\(++cnt[f[i]]\),但是这样是有问题的。
首先要了解匹配的性质,不然是无法理解的,也就是\(f_i\),能够有值的部分(也就是不为0)必然是连续的一段一段,而且根据kmp性质3,对于位置j,容易知道其实\(a[j+i+1\sim j]\)能够与\(b[1\sim i]\)相同的前提为\(a[j+i+1\sim j-1]\)和\(b[1\sim i-1]\)相同,然后在判断\(b[i]\)与\(a[j]\)是否相同。
如果真正理解了上面的这句话(不晓得我在说什么,为什么要说这些东西,多看几遍,多画图),容易知道我们每次\(++cnt[f[i]]\)(我们是要求一个以某个位置开头的前缀),那么必然对于一个位置开始的前缀,它的最大长度一直到0都会被统计一次,这样恰好符合了我们的\(cnt[i]\)的含义,而显然这样是算少了,原因在于\(f[i]\)的含义为a串以i结尾的后缀,能与b串匹配的最大长度,所以实际上对于a串在\(i-f[i]+1\)中的位置,还可以存在位置让其以它为开头其后缀与b串匹配。
根据kmp性质1,容易知道对于每个\(f[i]\),这些位置的匹配长度恰好为为\(next[f[i]]\),于是我们就只要倒序枚举i表示至少大于等于长度i所求的数量,每次有操作\(cnt[next[i]]+=cnt[i]\),而这个递推方程无后效性的原因在于\(next[i]\)必然小于\(i\),含义也就是对于长度大于等于i的位置数,其会对长度\(next[i]\)有贡献,其实很好理解,因为长度为i肯定kmp的次优决策点就是\(next[i]\),而大于i的长度为j,kmp性质告诉我们j又是在i的基础上,必然满足其次优决策点为\(next[j],next[next[j]]...\)下去必然会等于i,而显然\(cnt[i]\)有会包括这些情况,而无论如何这些情况都是大于\(next[i]\),而等于\(next[i]\)的部分已经在之前被计算过了\(++\)的时候已经被计算过了。
这道题目很抽象,感性理解的部分比较多,最后时间复杂度可以做到\(O(n)\),代码很简单。
参考代码:
#include <iostream>
#include <cstdio>
#define il inline
#define ri register
#define Size 200500
using namespace std;
char a[Size],b[Size];
int Next[Size],f[Size],cnt[Size];
il void get(char&),
kmp(char[],int,char[],int);
int main(){
int n,m,q;
scanf("%d%d%d",&n,&m,&q);
for(int i(1);i<=n;++i)get(a[i]);
for(int i(1);i<=m;++i)get(b[i]);
kmp(b,m,a,n);for(int i(1);i<=n;++i)++cnt[f[i]];
for(int i(m);i;--i)cnt[Next[i]]+=cnt[i];
while(q--)scanf("%d",&n),printf("%d\n",cnt[n]-cnt[n+1]);
return 0;
}
il void kmp(char a[],int la,char b[],int lb){
for(int i(2),j(0);i<=la;++i){
while(j&&a[j+1]!=a[i])j=Next[j];
if(a[j+1]==a[i])++j;Next[i]=j;
}for(int i(1),j(0);i<=lb;++i){
while(j&&(a[j+1]!=b[i]||j==la))j=Next[j];
if(a[j+1]==b[i])++j;f[i]=j;
}
}
il void get(char &c){
while(c=getchar(),c==' '||c=='\n'||c=='\r');
}