看了许久,发现这题貌似就是一个动态规划啊,但毕竟是贪心题库里的题,还是想想用贪心解吧。
经过(借鉴大佬思路)十分复杂的思考后,终于理解出了这题的贪心思路。该题的难点主要在最后可在任意湖边停住,而且不能往回走,在一个湖钓鱼时的效率还会越来越少。常规的思路看来是不行的了,题目好多动态未知的量,唯有我们更换角度,“化动为静”:
即然最后不知道停在哪个湖,那就分类讨论呗。把停在每个湖的最优解全部求出,在最后取个最优解不就行了吗?发现当我们知道主人公最后停在哪个湖后,她的路径也就唯一确定了(例如佳佳最后停在了第i个湖,那么她的路径一定是1—》2—》3—》。。。—》i),同时她的纯钓鱼时间可由总空闲时间减去行程时间唯一确定。考虑从哪个湖钓鱼一个5分钟,就相当于在路径1—》2—》3—》。。。—》i中的一个节点上“堆”上一个标记表示在这个湖又钓了5分钟的鱼,显然这里可用贪心策略,每次标记目前为止五分钟钓鱼数目最大的那个湖,并使当前记录答案的sumi+=在那个湖又钓的鱼数。最后比较所有的sumi(i=1,2,...,n)取最大的输出就行了。
还不懂?也许看看AC代码就懂了:
1 #include<iostream> 2 #include<cstdio> 3 #include<cctype> 4 #include<vector> 5 using namespace std; 6 7 int ans; 8 9 vector<int>fish,lesss,t;//每个湖第一个 5 分钟能钓到鱼的数量,每个湖每钓鱼5分钟较前5分钟钓的鱼数减少的数量,如题意 10 vector<int>get,tmpfish;//从第一个湖走到第i个湖所需时间,每个湖的当前5分钟能钓到的鱼数 11 12 char ch; 13 14 inline int read()//快读(亦名读入优化) 15 { 16 ans=0; 17 ch=getchar(); 18 while(!isdigit(ch)) ch=getchar(); 19 while(isdigit(ch)) ans=(ans<<3)+(ans<<1)+ch-'0',ch=getchar(); 20 return ans; 21 } 22 23 inline void init()//初始处理动态数组,因为希望动态数组的下标从1开始 24 { 25 fish.push_back(0); 26 lesss.push_back(0); 27 t.push_back(0); 28 get.push_back(0); 29 get.push_back(0);//注意get数组在主函数是从下标为2的开始处理的,因此需要多填一个0。 30 tmpfish.push_back(0); 31 }//为什么要填0?为了与普通全局数组的性质相同(定义时默认全初始化为0) 32 33 int main() 34 { 35 init(); 36 int n=read(),h=read()*12; 37 for(int i=1;i<=n;i++) fish.push_back(read()); 38 for(int i=1;i<=n;i++) lesss.push_back(read()); 39 for(int i=1;i<n;i++) t.push_back(read()); 40 for(int i=2;i<=n;i++) get.push_back(get[i-1]+t[i-1]); 41 int mava,mapo,tmphours,matot=0;//当前贪心找到的最大值,当前贪心找到的最大值对应的下标(即湖的编号),当前纯钓鱼时间,最后的答案。 42 for(int i=1;i<=n;i++) tmpfish.push_back(0); 43 for(int k=1;k<=n;k++) 44 if(h>get[k]) 45 { 46 tmphours=h-get[k];//可用的纯钓鱼时间 47 for(int i=1;i<=k;i++) tmpfish[i]=fish[i];//初始化 48 int sum=0;//记录的当佳佳最后停在第k个湖时的当前答案 49 while(tmphours>0) 50 { 51 mava=-2000000000; 52 mapo=0; 53 for(int i=1;i<=k;i++)//贪心选择 54 if(mava<tmpfish[i]) 55 { 56 mava=tmpfish[i]; 57 mapo=i; 58 } 59 if(mava<=0) break;//没鱼可钓就直接退出 60 sum+=mava; 61 if(tmpfish[mapo]>lesss[mapo]) tmpfish[mapo]-=lesss[mapo]; 62 else tmpfish[mapo]=0; 63 tmphours--; 64 } 65 if(sum>matot) matot=sum; 66 } 67 else break; 68 printf("%d",matot); 69 return 0; 70 }
最后再总结一下贪心吧:
贪心策略的确定:看到题时,可根据生活经验(滑稽)确认一个直觉指引的贪心策略。对付简单题很有用。
关注一下与题目有关的性质(可以是由数学推导的式子,或是题中描述的物品的一些跟生活有关的物理性质)基本跟贪心有关的题都会有找某个方面的最大值或最小值。
贪心策略的证明: 直接数学推导。
假设有一个更优的方案,反证。
玄学占卜
贪心的几点注意:当整体最优解可由局部最优解推出(并不只局限与一种策略)时才可用贪心。(否则用动态规划)
基本能用贪心的动态规划都行,不过一般贪心的复杂度要优于动态规划。