一道用单调有界证明的数列极限题目

已知正数列$\{a_n\}$对任意自然数$m,n$满足$a_{m+n}\leqslant a_m+a_n$,
证明数列$\left\{\frac{a_n}{n}\right\}$收敛.
\[
0<a_n\leqslant a_{n-1}+a_1\leqslant a_{n-2}+2a_1\leqslant\cdots\leqslant na_1,
\]
\[
\frac{a_{n+1}}{n+1}-\frac{a_{n}}{n}=\frac{na_{n+1}-(n+1)a_n}{n(n+1)}
=\frac{n(a_{n+1}-a_n)-a_n}{n(n+1)}=\frac{na_1-a_n}{n(n+1)}\geqslant 0,
\]
\[
\text{数列}\left\{\frac{a_n}{n}\right\}\text{单调有界, 因此收敛.}
\]

转载于:https://www.cnblogs.com/yinjc/p/4780379.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值