二维RMQ问题

前置知识

一维RMQ及其拓展


问题引入

  • 题目地址IN

对于一个n×mn\times mn×m的矩阵,每个格子有一个值,有QQQ个询问,每次询问你一个子矩阵中的最大值。

1≤n,m≤500,Q≤1061\leq n,m\leq 500,Q\leq 10^61n,m500,Q106


  • 暴力

每次花子矩阵大小的复杂度去查询。
复杂度最坏O(Q×n×m)O(Q\times n\times m)O(Q×n×m)

  • 改进

我们用nnn棵线段树或者树状数组来维护每行区间最大值,复杂度最坏O(nmlogm+Qnlogm)O(nmlogm+Qnlogm)O(nmlogm+Qnlogm),还是没法过,有没有更快的方法呢?

  • 分析

既然是静态的询问,没有修改操作,那么很容易联想到RMQRMQRMQ中的STSTST表。

那么暴力的STSTST表就是和数据结构的做法类似,预处理nnnSTSTST表,每次在多个STSTST表中查询最大值,复杂度最坏为O(nmlogm+Qn)O(nmlogm+Qn)O(nmlogm+Qn),虽然能过更多的数据,但是还是不够。

  • 二维STSTST

既然查询对象是个二维矩阵,那么我们能不能维护一个二维的STSTST表呢?答案显然是肯定的。

预处理

所以我们令st[i][j][k][l]st[i][j][k][l]st[i][j][k][l],为新的STSTST表,表示以(i,j)(i,j)(i,j)为左上角,右下角为(i+2k−1,j+2l−1)(i+2^k-1,j+2^l-1)(i+2k1,j+2l1)的矩阵中的最大值,那么我们可以看出预处理的复杂度会是O(nmlognlogm)O(nmlognlogm)O(nmlognlogm),所以对于询问数交少的还是用数据结构O(nmlogm)O(nmlogm)O(nmlogm)预处理查询比较好。

然后我们来看,对于每个st[i][j][k][l]st[i][j][k][l]st[i][j][k][l],可以由哪些状态更新。

我们来看这个状态表示的矩阵,如下图:
eg

假设这里左上角的点AAA(i,j)(i,j)(i,j),右下角点DDD(i+2k−1,j+2l−1)(i+2^k-1,j+2^l-1)(i+2k1,j+2l1),那么我们可以把它分成两部分,如下图:

eg

那么我们将点EEE看作(i,j+2l−1)(i,j+2^{l-1})(i,j+2l1),其实原来的大矩阵就可以由分成的这两个小矩阵更新得到,转移如下:
st[i][j][k][l]=max⁡{st[i][j][k][l−1],st[i][j+2l−1][l−1]}st[i][j][k][l]=\max\{st[i][j][k][l-1],st[i][j+2^{l-1}][l-1]\}st[i][j][k][l]=max{st[i][j][k][l1],st[i][j+2l1][l1]}

其中,max⁡\maxmax里面第一个为上半部分矩阵,后面一个为下半部分矩阵。

如果l=0l=0l=0的话,就将其竖起剖成两部分即可,是同理的。转移如下:

st[i][j][k][l]=max⁡{st[i][j][k−1][l],st[i+2k−1][j][k−1][l]}st[i][j][k][l]=\max\{st[i][j][k-1][l],st[i+2^{k-1}][j][k-1][l]\}st[i][j][k][l]=max{st[i][j][k1][l],st[i+2k1][j][k1][l]}

所以最后按照k,lk,lk,l从小到大更新即可。

查询

对于一个子矩阵,我们假设它的左上角坐标为(x1,y1)(x_1,y_1)(x1,y1),右下角为(x2,y2)(x_2,y_2)(x2,y2),那么可以通过预处理的二维STSTST表,将其分成四部分查询,如下图:

eg

其中四个部分为图中W1(A,E,F,G),W2(H,B,J,I),W3(M,L,K,C),W4(O,P,D,N)W_1(A,E,F,G),W_2(H,B,J,I),W_3(M,L,K,C),W_4(O,P,D,N)W1(A,E,F,G),W2(H,B,J,I),W3(M,L,K,C),W4(O,P,D,N),查询区间是可以重合的。

其实就对应了如下四个预处理的状态,我们令p=log2(x2−x1+1),q=log2(y2−y1+1)p=log_2(x_2-x_1+1),q=log_2(y_2-y_1+1)p=log2(x2x1+1),q=log2(y2y1+1)

max⁡{st[x1][y1][p][q]                         →  W1st[x2−2p+1][y1][p][q]          →  W2st[x1][y2−2q+1][p][q]          →  W3st[x2−2p+1][y2−2q+1]   →  W4}→ans\max\begin{cases}st[x_1][y_1][p][q]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \rightarrow\ \ W_1\\ st[x_2-2^p+1][y_1][p][q] \ \ \ \ \ \ \ \ \ \ \rightarrow\ \ W_2\\ st[x_1][y_2-2^q+1][p][q]\ \ \ \ \ \ \ \ \ \ \rightarrow\ \ W_3\\ st[x_2-2^p+1][y_2-2^q+1] \ \ \ \rightarrow\ \ W_4\end{cases}\bigg\}\rightarrow ansmaxst[x1][y1][p][q]                           W1st[x22p+1][y1][p][q]            W2st[x1][y22q+1][p][q]            W3st[x22p+1][y22q+1]     W4}ans

答案就为上面四个矩阵的max⁡\maxmax,所以预处理对数,每次O(1)O(1)O(1)回答即可。


那么总的复杂度为O(nmlognlogm+Q)O(nmlognlogm+Q)O(nmlognlogm+Q),是可以过的了。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int Log=12;
const int N=610;
const int inf=1e9;
int n,m,Q;
int maxv[Log][Log][N][N];
int pre[N],val[N][N]; 
void init(){
	for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)maxv[0][0][i][j]=val[i][j];
	pre[2]=pre[3]=1;
	for(int i=4,up=max(n,m);i<=up;i++)pre[i]=pre[i>>1]+1;
	int up1=pre[n]+1,up2=pre[m]+1;
	for(int l1=0;l1<=up1;l1++){
		for(int l2=0;l2<=up2;l2++){
			if(!l1&&!l2) continue;
			for(int i=1;(i+(1<<l1)-1)<=n;i++){
				for(int j=1;(j+(1<<l2)-1)<=m;j++){
					if(l2)maxv[l1][l2][i][j]=max(maxv[l1][l2-1][i][j],maxv[l1][l2-1][i][j+(1<<(l2-1))]);
					else maxv[l1][l2][i][j]=max(maxv[l1-1][l2][i][j],maxv[l1-1][l2][i+(1<<(l1-1))][j]);
				}
			}
		}
	}
}
int query(int x1,int y1,int x2,int y2){
	int p=pre[x2-x1+1],q=pre[y2-y1+1];
	int ans=-inf;
	ans=max(maxv[p][q][x1][y1],maxv[p][q][x1][y2-(1<<q)+1]);
	ans=max(ans,max(maxv[p][q][x2-(1<<p)+1][y1],maxv[p][q][x2-(1<<p)+1][y2-(1<<q)+1]));
	return ans;
}
int x1,x2,y1,y2;
int main(){
	scanf("%d%d%d",&n,&m,&Q);
	for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)scanf("%d",&val[i][j]);
	init();
	for(int i=1;i<=Q;i++){
		scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
		printf("%d\n",query(x1,y1,x2,y2));
	}
	return 0;
}

转载于:https://www.cnblogs.com/VictoryCzt/p/10053392.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值