二维RMQ 思想及模板

二维RMQ问题就是求一个矩阵N*M中的一个小块矩阵内的最值问题.其中dmin[i][j][ii][jj]=x表示以(i, j)为左上角,以(i+(1<<ii)-1, j+(1<<jj)-1 )为右下角的矩阵内的最小值.dmax的值类似.

         下面dmin[i][j][ii][jj]的值如何求呢?首先我们知道dmin[i][j][0][0]的值就是v[i][j],而假设dmin[i][j][ii][jj]中的ii不为0,那么dmin[i][j][ii][jj]= min(dmin[i][j][ii-1][jj], dmin[i+(1<<ii)][j][ii-1][jj] );如果ii为0,那么就按jj来求.

         其实上面的求法就是等于把二维问题转变为一维问题来求解.

         下面我们讨论如何查询结果.

         对于一个以(x1, y1)为左上角,以(x2, y2)为右下角的矩形,如何求它的最小值和最大值呢?下面假设我们求最小值:

         我们把(x1,y1)与(x2,y2)构成的矩形分成四小块,这四小块可能有重合部分,但是它们共同构成了目标矩形:

         dmin[x1][y1][ii][jj]

         dmin[x1][y2-(1<<jj)+1][ii][jj]

         dmin[x2-(1<<ii)+1][y1][ii][jj]

         dmin[x2-(1<<ii)+1][y2-(1<<jj)+1][ii][jj]

         (自己想象下上面4小块是怎么样的?)

         temp 1=min(dmin[x1][y1][ii][jj] , dmin[x1][y2-(1<<jj)+1][ii][jj])

         temp 2=min(dmin[x2-(1<<ii)+1][y1][ii][jj] ,dmin[x2-(1<<ii)+1][y2-(1<<jj)+1][ii][jj] )

         最终结果是min(temp1, temp2);

//POJ 2019
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=300;
int val[MAXN][MAXN];
int dmin[MAXN][MAXN][10][10];
int dmax[MAXN][MAXN][10][10];
void initRMQ(int n,int m)//对n*m的矩阵初始化RMQ且矩阵下标从1开始
{
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            dmin[i][j][0][0]=dmax[i][j][0][0]=val[i][j];
    for(int ii=0;(1<<ii)<=n;ii++)
        for(int jj=0;(1<<jj)<=m;jj++)
        if(ii+jj)
            for(int i=1;i+(1<<ii)-1<=n;i++)
                for(int j=1;j+(1<<jj)-1<=m;j++)
                if(ii)
                {
                    dmin[i][j][ii][jj] = min(dmin[i][j][ii-1][jj] ,dmin[i+(1<<(ii-1))][j][ii-1][jj]);
                    dmax[i][j][ii][jj] = max(dmax[i][j][ii-1][jj] ,dmax[i+(1<<(ii-1))][j][ii-1][jj]);
                }
                else
                {
                    dmin[i][j][ii][jj] = min(dmin[i][j][ii][jj-1] , dmin[i][j+(1<<(jj-1))][ii][jj-1]);
                    dmax[i][j][ii][jj] = max(dmax[i][j][ii][jj-1] , dmax[i][j+(1<<(jj-1))][ii][jj-1]);
                }
}
int getMax(int x1,int y1,int x2,int y2)//RMQ查询
{
    int k1=0;
    while((1<<(k1+1))<=x2-x1+1)k1++;
    int k2=0;
    while((1<<(k2+1))<=y2-y1+1)k2++;
    x2 = x2 - (1<<k1)+1;
    y2 = y2 - (1<<k2)+1;
    return max(max(dmax[x1][y1][k1][k2],dmax[x1][y2][k1][k2]) ,max(dmax[x2][y1][k1][k2],dmax[x2][y2][k1][k2]) );
}
int getMin(int x1,int y1,int x2,int y2)//RMQ查询
{
    int k1=0;
    while((1<<(k1+1))<=x2-x1+1)k1++;
    int k2=0;
    while((1<<(k2+1))<=y2-y1+1)k2++;
    x2 = x2 - (1<<k1)+1;
    y2 = y2 - (1<<k2)+1;
    return min( min(dmin[x1][y1][k1][k2],dmin[x1][y2][k1][k2]) ,min(dmin[x2][y1][k1][k2],dmin[x2][y2][k1][k2]) );
}


例题:

题意:

        给你一个n*n的整数矩阵,然后有k个询问且给你一个常数b。对于每个询问(x,y),你要输出以(x,y)为左上角,以(x+b-1,y+b-1)为左下角的矩形 内整数最大值-最小值的差。

分析:

        基本的二维RMQ查询.

        类似于二维树状数组问题,二维RMQ问题就是求一个矩阵N*M中的一个小块矩阵内的最值问题.其中dmin[i][j][ii][jj]=x表示以(i , j)为左上角,以( i+(1<<ii)-1, j+(1<<jj)-1 )为右下角的矩阵内的最小值.dmax的值类似.

       下面dmin[i][j][ii][jj]的值如何求呢?首先我们知道dmin[i][j][0][0]的值就是v[i][j],而假设dmin[i][j][ii][jj]中的ii不为0,那么dmin[i][j][ii][jj] =min(dmin[i][j][ii-1][jj], dmin[i+(1<<ii)][j][ii-1][jj] );如果ii为0,那么就按jj来求.

       其实上面的求法就是等于把二维问题转变为一维问题来求解.

       下面我们讨论如何查询结果.

        对于一个以(x1 , y1)为左上角,以(x2 , y2)为右下角的矩形,如何求它的最小值和最大值呢?下面假设我们求最小值:

        我们把(x1,y1)与(x2,y2)构成的矩形分成四小块,这四小块可能有重合部分,但是它们共同构成了目标矩形:

        dmin[x1][y1][ii][jj]

        dmin[x1][y2-(1<<jj)+1][ii][jj]

        dmin[x2-(1<<ii)+1][y1][ii][jj]

        dmin[x2-(1<<ii)+1][y2-(1<<jj)+1][ii][jj]

        (自己想象下上面4小块是怎么样的?)

        temp 1=min( dmin[x1][y1][ii][jj] , dmin[x1][y2-(1<<jj)+1][ii][jj])

        temp 2=min( dmin[x2-(1<<ii)+1][y1][ii][jj] ,dmin[x2-(1<<ii)+1][y2-(1<<jj)+1][ii][jj] )

        最终结果是min(temp1, temp2);
代码:

<span style="font-size:18px;">//POJ 2019
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=255;
int val[MAXN][MAXN];
int dmin[MAXN][MAXN][8][8];
int dmax[MAXN][MAXN][8][8];
void initRMQ(int n,int m)
{
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            dmin[i][j][0][0]=dmax[i][j][0][0]=val[i][j];
    for(int ii=0;(1<<ii)<=n;ii++)
        for(int jj=0;(1<<jj)<=m;jj++)
        if(ii+jj)
            for(int i=1;i+(1<<ii)-1<=n;i++)
                for(int j=1;j+(1<<jj)-1<=m;j++)
                if(ii)
                {
                    dmin[i][j][ii][jj] = min(dmin[i][j][ii-1][jj] ,dmin[i+(1<<(ii-1))][j][ii-1][jj]);
                    dmax[i][j][ii][jj] = max(dmax[i][j][ii-1][jj] ,dmax[i+(1<<(ii-1))][j][ii-1][jj]);
                }
                else
                {
                    dmin[i][j][ii][jj] = min(dmin[i][j][ii][jj-1] , dmin[i][j+(1<<(jj-1))][ii][jj-1]);
                    dmax[i][j][ii][jj] = max(dmax[i][j][ii][jj-1] , dmax[i][j+(1<<(jj-1))][ii][jj-1]);
                }
}
int getMax(int x1,int y1,int x2,int y2)
{
    int k1=0;
    while((1<<(k1+1))<=x2-x1+1)k1++;
    int k2=0;
    while((1<<(k2+1))<=y2-y1+1)k2++;
    x2 = x2 - (1<<k1)+1;
    y2 = y2 - (1<<k2)+1;
    return max(max(dmax[x1][y1][k1][k2],dmax[x1][y2][k1][k2]) ,max(dmax[x2][y1][k1][k2],dmax[x2][y2][k1][k2]) );
}
int getMin(int x1,int y1,int x2,int y2)
{
    int k1=0;
    while((1<<(k1+1))<=x2-x1+1)k1++;
    int k2=0;
    while((1<<(k2+1))<=y2-y1+1)k2++;
    x2 = x2 - (1<<k1)+1;
    y2 = y2 - (1<<k2)+1;
    return min( min(dmin[x1][y1][k1][k2],dmin[x1][y2][k1][k2]) ,min(dmin[x2][y1][k1][k2],dmin[x2][y2][k1][k2]) );
}
 
int main()
{
    int n,b,k;
    while(scanf("%d%d%d",&n,&b,&k)==3&&n&&b&&k)
    {
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                scanf("%d",&val[i][j]);
        initRMQ(n,n);
        while(k--)
        {
            int x1,y1;
            scanf("%d%d",&x1,&y1);
            int ans=getMax(x1,y1,x1+b-1,y1+b-1)-getMin(x1,y1,x1+b-1,y1+b-1);
            printf("%d\n",ans);
        }
    }
    return 0;
}
</span>

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值