洛谷 P2327 SCOI2005 扫雷

看起来我做的和其他题解不一样

那就发一篇吧

首先本题情况看似无厘头,但是仔细观察,不难发现:

我们可以假设第一种情况,接着可以推出第二种

然后有了两个已知的后,第三个显而易见

如果你要问我怎么推出来的吗,我在里面说的的逻辑判断已经很明白了

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>

using namespace std;
int boom[10086];
int ans;
int tj[10086];
int looker[10086];
int n;
int pdf()   //这段代码是用当前推完的雷局反推右边的数字,如果数字不一样就说明这个雷局不是答案。(因为我们第一颗棋子是假设的)
{
    memset(looker,0,sizeof(looker));
    for(int i=1;i<=n;i++)
    {
        if(tj[i]==1) 
        {
            looker[i-1]++;   
            looker[i]++;
            looker[i+1]++;
        }
    }
    for(int i=1;i<=n;i++)
    if(looker[i]!=boom[i]) return 0;
    return 1;
}
void getnext(int i)
//这是一个判断,这些逻辑的来源是上面一格和二格以及上面一格右边的数字,你可以在草稿纸上手推(反正我就是手推的)
{
    if(i==2)
    //由于第二个点只能由上面一个点推出因此需要特判
    {
        if(boom[i-1]==2) tj[i]=1;
        if(boom[i-1]==0) tj[i]=0;
        if(boom[i-1]==1&&tj[i-1]==1) tj[i]=0;
        if(boom[i-1]==1&&tj[i-1]==0) tj[i]=1;
    }
    else
    // 每一行都对应一种情况。括号里是已知情况,括号外为推得当前的雷 tj[i]=1 就说明这个点有雷
    {
    if(boom[i-1]==0) tj[i]=0;
    if(boom[i-1]==3) tj[i]=1;
    if(tj[i-2]==0&&tj[i-1]==1&&boom[i-1]==2) tj[i]=1;
    if(tj[i-2]==0&&tj[i-1]==1&&boom[i-1]==1) tj[i]=0;
    if(tj[i-2]==0&&tj[i-1]==0&&boom[i-1]==1) tj[i]=1;
    if(tj[i-2]==1&&tj[i-1]==1&&boom[i-1]==2) tj[i]=0;
    if(tj[i-2]==1&&tj[i-1]==0&&boom[i-1]==2) tj[i]=1;
    if(tj[i-2]==1&&tj[i-1]==0&&boom[i-1]==1) tj[i]=0;     
    }
    return ;
}
int pd(int f)  //函数封装,养成良好习惯
{
    memset(tj,0,sizeof(tj));
    tj[1]=f;
    for(int i=2;i<=n;i++)
    getnext(i);
    int bj=pdf();  
    return bj;
}
int main()
{
    int i;
    scanf("%d",&n);
    for(i=1;i<=n;i++)
    scanf("%d",&boom[i]);
    ans+=pd(0);//两种情况都要枚举并且验证,答案有可能为0
    ans+=pd(1); 
    printf("%d",ans);
    return 0;
}

这道题体现了草稿纸的重要性

转载于:https://www.cnblogs.com/zsx6/p/11052703.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值