题意:
给定一个n*m的空棋盘,问合法放置任意多个炮有多少种情况。合法放置的意思是棋子炮不会相互打到。
思路:
这道题我们可以发现因为炮是隔一个棋子可以打出去,所以每一行每一列最多放置两个炮。
这样子我们就可以试着压缩状态,记录前i行有几列是放一个棋子的,有几列是放两个棋子的,有几列是不放棋子的。
即设dp[ i ][ j ] [ k ] 表示前 i 行,有 j 列是放一个棋子的,有k列是放两个棋子的,有 m - j - k列是不放棋子的。
又由于每行最多可以放两个棋子,所以可以退出第i行和第i-1行的关系。
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> using namespace std; #define lson (l , mid , rt << 1) #define rson (mid + 1 , r , rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << "\n"; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; //typedef __int128 bll; typedef pair<ll ,ll > pll; typedef pair<int ,int > pii; typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0) #define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行 #define REP(i , j , k) for(int i = j ; i < k ; ++i) #define max3(a,b,c) max(max(a,b), c); #define min3(a,b,c) min(min(a,b), c); //priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 const int mod = 9999973; const double esp = 1e-8; const double PI=acos(-1.0); const double PHI=0.61803399; //黄金分割点 const double tPHI=0.38196601; template<typename T> inline T read(T&x){ x=0;int f=0;char ch=getchar(); while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar(); while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar(); return x=f?-x:x; } /*-----------------------showtime----------------------*/ const int maxn = 200; ll dp[maxn][maxn][maxn]; ll c[maxn][maxn]; int n,m; void init(){ c[0][0] = 1; for(int i=1; i<=m; i++){ for(int j=0; j<=i; j++){ if(j==0) c[i][j] = 1; else if(j==i) c[i][j] = 1; else c[i][j] = (c[i-1][j] + c[i-1][j-1])%mod; } } } int main(){ scanf("%d%d", &n, &m); init(); dp[0][0][0] = 1; for(int i=1; i<=n; i++){ for(int j=0; j<=m; j++){ for(int k=0; k<=m-j; k++){ ll tmp = dp[i-1][j][k]; if(k>0) tmp = tmp + c[j+1][1] * dp[i-1][j+1][k-1] % mod; if(k>1) tmp = tmp + c[j+2][2] * dp[i-1][j+2][k-2] % mod; if(j>0) tmp = tmp + c[m-k-j+1][1] * dp[i-1][j-1][k] % mod; if(j>1) tmp = tmp + c[m-k-j+2][2] * dp[i-1][j-2][k] % mod; if(k>0) tmp = tmp + c[j][1] * c[m-j-k+1][1] * dp[i-1][j][k-1]%mod; tmp = tmp % mod; dp[i][j][k] = tmp % mod; } } } ll ans = 0; for(int j=0; j<=m; j++){ for(int k=0; k<=m-j; k++){ ans = (ans + dp[n][j][k]) % mod; } } printf("%lld\n", ans); return 0; }