题目描述
这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法。大家肯定很清楚,在中国象棋中炮的行走方式是:一个炮攻击到另一个炮,当且仅当它们在同一行或同一列中,且它们之间恰好 有一个棋子。你也来和小可可一起锻炼一下思维吧!
输入输出格式
输入格式:
一行包含两个整数N,M,之间由一个空格隔开
输出格式:
总共的方案数,由于该值可能很大,只需给出方案数模9999973的结果。
输入输出样例
输入样例#1:
1 3
输出样例#1:
7
说明
样例说明
除了3个格子里都塞满了炮以外,其它方案都是可行的,所以一共有222-1=7种方案。
数据范围
100%的数据中N和M均不超过100
50%的数据中N和M至少有一个数不超过8
30%的数据中N和M均不超过6
解释:不同于以前的状态压缩,我们不需要知道每行的状态,只需要抽象的定义每列1和2的个数就行了,dp[i][j][k]:1-i行,列为1的个数为j,列为2的个数为k,转移很明显分类就好了
#include<iostream>
#define N 102
#define mod 9999973
using namespace std;
long long dp[N][N][N]={0};
int n=0,m=0;
long long C(long long n){
return n*(n-1)/2;
}
int main(){
ios::sync_with_stdio(false);
cin>>n>>m;
dp[0][0][0]=1;
for(int i=1;i<=n;i++){
for(int j=0;j<=m;j++){
for(int k=0;k+j<=m;k++){
dp[i][j][k]+=dp[i-1][j][k];
if(j>0) dp[i][j][k]+=dp[i-1][j-1][k]*(m-j+1-k);
if(k>0) dp[i][j][k]+=dp[i-1][j+1][k-1]*(j+1);
if(j>1) dp[i][j][k]+=dp[i-1][j-2][k]*C(m-j-k+2);
if(k>1) dp[i][j][k]+=dp[i-1][j+2][k-2]*C(j+2);
if(k>0) dp[i][j][k]+=dp[i-1][j][k-1]*j*(m-j-k+1);
dp[i][j][k]%=mod;
}
}
}
long long ret=0;
for(int i=0;i<=m;i++){
for(int j=0;i+j<=m;j++){
ret+=dp[n][i][j];
ret%=mod;
}
}
cout<<ret<<endl;
return 0;
}