新的一周>.<
9.5
cf 340 b B - Maximal Area Quadrilateral
给出 n 个点,求能够形成的四边形的最大面积
最开始的做法是 暴力枚举4个点,再去算面积,不过不对..应该是算面积那里不对
然后应该是枚举四边形的对角线
维护对角线两边的三角形的最大值
1 #include <cstdio> 2 #include <algorithm> 3 #include <cmath> 4 #include <vector> 5 using namespace std; 6 7 const int INF = (1<<30)-1; 8 9 //lrj计算几何模板 10 struct Point 11 { 12 int x, y; 13 Point(double x=0, double y=0) :x(x),y(y) {} 14 }; 15 typedef Point Vector; 16 17 Point read_point(void) 18 { 19 double x, y; 20 scanf("%lf%lf", &x, &y); 21 return Point(x, y); 22 } 23 24 const double EPS = 1e-10; 25 26 //向量+向量=向量 点+向量=点 27 Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } 28 29 //向量-向量=向量 点-点=向量 30 Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); } 31 32 //向量*数=向量 33 Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } 34 35 //向量/数=向量 36 Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } 37 38 bool operator < (const Point& a, const Point& b) 39 { return a.x < b.x || (a.x == b.x && a.y < b.y); } 40 41 int dcmp(double x) 42 { if(fabs(x) < EPS) return 0; else return x < 0 ? -1 : 1; } 43 44 bool operator == (const Point& a, const Point& b) 45 { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } 46 47 /**********************基本运算**********************/ 48 49 //点积 50 double Dot(Vector A, Vector B) 51 { return A.x*B.x + A.y*B.y; } 52 //向量的模 53 double Length(Vector A) { return sqrt(Dot(A, A)); } 54 55 //向量的夹角,返回值为弧度 56 double Angle(Vector A, Vector B) 57 { return acos(Dot(A, B) / Length(A) / Length(B)); } 58 59 //叉积 60 double Cross(Vector A, Vector B) 61 { return A.x*B.y - A.y*B.x; } 62 63 //向量AB叉乘AC的有向面积 64 double Area2(Point A, Point B, Point C) 65 { return Cross(B-A, C-A); } 66 67 //向量A旋转rad弧度 68 Vector VRotate(Vector A, double rad) 69 { 70 return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad)); 71 } 72 73 //将B点绕A点旋转rad弧度 74 Point PRotate(Point A, Point B, double rad) 75 { 76 return A + VRotate(B-A, rad); 77 } 78 79 //求向量A向左旋转90°的单位法向量,调用前确保A不是零向量 80 Vector Normal(Vector A) 81 { 82 double l = Length(A); 83 return Vector(-A.y/l, A.x/l); 84 } 85 86 /**********************点和直线**********************/ 87 88 //求直线P + tv 和 Q + tw的交点,调用前要确保两条直线有唯一交点 89 Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) 90 { 91 Vector u = P - Q; 92 double t = Cross(w, u) / Cross(v, w); 93 return P + v*t; 94 }//在精度要求极高的情况下,可以自定义分数类 95 96 //P点到直线AB的距离 97 double DistanceToLine(Point P, Point A, Point B) 98 { 99 Vector v1 = B - A, v2 = P - A; 100 return fabs(Cross(v1, v2)) / Length(v1); //不加绝对值是有向距离 101 } 102 103 //点到线段的距离 104 double DistanceToSegment(Point P, Point A, Point B) 105 { 106 if(A == B) return Length(P - A); 107 Vector v1 = B - A, v2 = P - A, v3 = P - B; 108 if(dcmp(Dot(v1, v2)) < 0) return Length(v2); 109 else if(dcmp(Dot(v1, v3)) > 0) return Length(v3); 110 else return fabs(Cross(v1, v2)) / Length(v1); 111 } 112 113 //点在直线上的射影 114 Point GetLineProjection(Point P, Point A, Point B) 115 { 116 Vector v = B - A; 117 return A + v * (Dot(v, P - A) / Dot(v, v)); 118 } 119 120 //线段“规范”相交判定 121 bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) 122 { 123 double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1); 124 double c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1); 125 return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0; 126 } 127 128 //判断点是否在线段上 129 bool OnSegment(Point P, Point a1, Point a2) 130 { 131 Vector v1 = a1 - P, v2 = a2 - P; 132 return dcmp(Cross(v1, v2)) == 0 && dcmp(Dot(v1, v2)) < 0; 133 } 134 135 //求多边形面积 136 double PolygonArea(Point* P, int n) 137 { 138 double ans = 0.0; 139 for(int i = 1; i < n - 1; ++i){ 140 double tmp = Cross(P[i]-P[0], P[i+1]-P[0]); 141 tmp = fabs(tmp); 142 //printf("tmp = %lf\n",tmp); 143 ans += tmp; 144 } 145 return ans/2; 146 } 147 148 Point p[5],a[505]; 149 int n; 150 151 void solve(){ 152 double ans = 0.0; 153 for(int i = 1;i <= n;i++){ 154 for(int j = i+1;j <= n;j++){ 155 double minn = -1.0*INF; 156 double maxx = -1.0*INF; 157 for(int k = 1;k <= n;k++){ 158 if(k == i || k == j) continue; 159 // printf("i = %d j = %d k = %d ",i,j,k); 160 double tmp = Cross(a[i]-a[j], a[k]-a[j]); 161 if(tmp < 0) { 162 tmp = -tmp; 163 minn = max(tmp,minn); 164 } 165 else maxx = max(maxx,tmp); 166 } 167 ans = max(ans,(minn+maxx)/2.0); 168 } 169 } 170 printf("%.12lf\n",ans); 171 } 172 173 int main(){ 174 while(scanf("%d",&n) != EOF){ 175 for(int i = 1;i <= n;i++){ 176 scanf("%d %d",&a[i].x,&a[i].y); 177 } 178 solve(); 179 } 180 return 0; 181 }
9.6
又挂笔试辣
cf 上不去...好不容易码好...心碎..TwT
9.7
cf 429d D - Tricky Function
定义 f(i,j) = (j-i)^2 + (sum[j]-sum[i])^2
求最小的f(i,j)
没有想出来
先看 f(i,j)像求两点之间距离的样子,所以把点构造成 (i,sum[i])
就是求平面最近点对了
T 了好几次 是因为抄板抄错了
题目里面现在 的是平方,所以板里面求距离的地方都要平方一下
1 #include <iostream> 2 #include <cstdio> 3 #include <cstdlib> 4 #include <cstring> 5 #include <algorithm> 6 #include <cmath> 7 using namespace std; 8 typedef long long LL; 9 const double eps = 1e-8; 10 const LL INF = (1LL << 60); 11 const int maxn = 1e5+5; 12 int n; 13 LL a[maxn]; 14 15 struct Point{ 16 LL x,y; 17 Point(LL x=0, LL y=0):x(x),y(y) {} 18 bool operator < (const Point& p) const { 19 if(x != p.x) return x < p.x; 20 return y < p.y; 21 } 22 }p[maxn],temp[maxn]; 23 24 bool cmpy(Point a, Point b){ 25 return a.y < b.y; 26 } 27 28 LL Dis(Point a, Point b){ 29 return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y); 30 } 31 32 LL sqr(LL x){ 33 return x*x; 34 } 35 36 LL Closest_Pair(int left, int right){ 37 LL d = INF; 38 if(left == right) return d; 39 if(left +1 == right) return Dis(p[left],p[right]); 40 int mid = (left+right)>>1; 41 LL d1 = Closest_Pair(left,mid); 42 LL d2 = Closest_Pair(mid+1,right); 43 d = min(d1,d2); 44 int k = 0; 45 for(int i = left; i <= right; i++) { 46 if(sqr(p[mid].x - p[i].x) <= d) 47 temp[k++] = p[i]; 48 } 49 sort(temp,temp+k,cmpy); 50 for(int i = 0; i < k; i++){ 51 for(int j = i+1; j < k && sqr(temp[j].y - temp[i].y) < d; j++){ 52 LL d3 = Dis(temp[i],temp[j]); 53 d = min(d,d3); 54 } 55 } 56 return d; 57 } 58 59 int main(){ 60 scanf("%d",&n); 61 LL sum = 0LL; 62 for(int i = 0;i < n;i++){ 63 scanf("%I64d",&a[i]); 64 sum += a[i]; 65 p[i] = Point(i,sum); 66 } 67 sort(p,p+n); 68 printf("%I64d\n",Closest_Pair(0,n-1)); 69 return 0; 70 }
cf 280 a A - Rectangle Puzzle
给出 一个矩形,再给出它旋转的角度,求这两个矩形相交的面积
第一种 是题目里面那种,解下方程
第二种 是构成两个梯形了,可以拼成一个矩形
wa 成狗
int w,h
double ans = w*h
爆掉了都不知道
还有 就是 感觉打代码好粗心啊,尤其是计算几何就更要细心了
有时候wa 了都不知道咋调
要向司老大学习啊
1 #include <cstdio> 2 #include <cstring> 3 #include <cmath> 4 #include <iostream> 5 #include <algorithm> 6 using namespace std; 7 8 const double PI = acos(-1.0); 9 10 int w,h,a; 11 12 void solve(){ 13 double ans = 0.0; 14 if(a > 90) a = 180-a; 15 double tot = 1.0*w*h; 16 double b = 1.0*a/180.0 * PI; 17 if(a == 0 || a == 180){ 18 ans = 1.0*w*h; 19 } 20 else if(ans == 90){ 21 ans = 1.0*w*w; 22 } 23 else{ 24 double x,y; 25 if(tan(0.5*b) < 1.0*h/w){ 26 double fz = (h*tan(b)) - (1.0*w)*(1+1.0/(cos(b))); 27 double fm = tan(b)*tan(b) - (1.0+1.0/cos(b))*(1.0+1.0/cos(b)); 28 //printf("fz = %lf fm = %lf\n",fz,fm); 29 y = fz/fm; 30 fz = h-y*tan(b); 31 fm = (1.0+1.0/cos(b)); 32 x = fz/fm; 33 //printf("x = %lf y = %lf\n",x,y); 34 double s1 = y*(y*tan(b)); 35 double s2 = x*(x*tan(b)); 36 //printf("tot = %lf s1 = %lf s2 = %lf\n",tot,s1,s2); 37 ans = tot-s1-s2; 38 } 39 else{ 40 ans = tot - (w-1.0*h/sin(b))*h; 41 } 42 43 } 44 printf("%.12lf\n",ans); 45 } 46 47 int main(){ 48 while(scanf("%d %d %d",&w,&h,&a) != EOF){ 49 if(w < h) swap(w,h); 50 solve(); 51 } 52 return 0; 53 }
9.8
早上写的题不会写dfs_up的
晚上本来有个面试...不知道为什么给调成销售类的了-_-于是就没面了
害得我紧张好一阵
然后开始接着看圆
9.9
cf 600 d Area of Two Circles' Intersection
求两个圆相交的面积
相离,内含都是 0
相交的时候,注意到形成了两个全等的三角形,就知道怎么求面积了
1 #include <cstdio> 2 #include <algorithm> 3 #include <cmath> 4 #include <iomanip> 5 #include <vector> 6 #include <iostream> 7 using namespace std; 8 //lrj计算几何模板 9 struct Point 10 { 11 long double x, y; 12 Point(long double x=0,long double y=0) :x(x),y(y) {} 13 }; 14 typedef Point Vector; 15 16 Point read_point(void) 17 { 18 double x, y; 19 scanf("%lf%lf", &x, &y); 20 return Point(x, y); 21 } 22 23 const double EPS = 1e-10; 24 25 //向量+向量=向量 点+向量=点 26 Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } 27 28 //向量-向量=向量 点-点=向量 29 Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); } 30 31 //向量*数=向量 32 Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } 33 34 //向量/数=向量 35 Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } 36 37 bool operator < (const Point& a, const Point& b) 38 { return a.x < b.x || (a.x == b.x && a.y < b.y); } 39 40 int dcmp(double x) 41 { if(fabs(x) < EPS) return 0; else return x < 0 ? -1 : 1; } 42 43 bool operator == (const Point& a, const Point& b) 44 { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } 45 46 /**********************基本运算**********************/ 47 48 //点积 49 double Dot(Vector A, Vector B) 50 { return A.x*B.x + A.y*B.y; } 51 //向量的模 52 double Length(Vector A) { return sqrt(Dot(A, A)); } 53 54 //向量的夹角,返回值为弧度 55 double Angle(Vector A, Vector B) 56 { return acos(Dot(A, B) / Length(A) / Length(B)); } 57 58 //叉积 59 double Cross(Vector A, Vector B) 60 { return A.x*B.y - A.y*B.x; } 61 62 //向量AB叉乘AC的有向面积 63 double Area2(Point A, Point B, Point C) 64 { return Cross(B-A, C-A); } 65 66 //向量A旋转rad弧度 67 Vector VRotate(Vector A, double rad) 68 { 69 return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad)); 70 } 71 72 //将B点绕A点旋转rad弧度 73 Point PRotate(Point A, Point B, double rad) 74 { 75 return A + VRotate(B-A, rad); 76 } 77 78 //求向量A向左旋转90°的单位法向量,调用前确保A不是零向量 79 Vector Normal(Vector A) 80 { 81 double l = Length(A); 82 return Vector(-A.y/l, A.x/l); 83 } 84 85 /**********************点和直线**********************/ 86 87 //求直线P + tv 和 Q + tw的交点,调用前要确保两条直线有唯一交点 88 Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) 89 { 90 Vector u = P - Q; 91 double t = Cross(w, u) / Cross(v, w); 92 return P + v*t; 93 }//在精度要求极高的情况下,可以自定义分数类 94 95 //P点到直线AB的距离 96 double DistanceToLine(Point P, Point A, Point B) 97 { 98 Vector v1 = B - A, v2 = P - A; 99 return fabs(Cross(v1, v2)) / Length(v1); //不加绝对值是有向距离 100 } 101 102 //点到线段的距离 103 double DistanceToSegment(Point P, Point A, Point B) 104 { 105 if(A == B) return Length(P - A); 106 Vector v1 = B - A, v2 = P - A, v3 = P - B; 107 if(dcmp(Dot(v1, v2)) < 0) return Length(v2); 108 else if(dcmp(Dot(v1, v3)) > 0) return Length(v3); 109 else return fabs(Cross(v1, v2)) / Length(v1); 110 } 111 112 //点在直线上的射影 113 Point GetLineProjection(Point P, Point A, Point B) 114 { 115 Vector v = B - A; 116 return A + v * (Dot(v, P - A) / Dot(v, v)); 117 } 118 119 //线段“规范”相交判定 120 bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) 121 { 122 double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1); 123 double c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1); 124 return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0; 125 } 126 127 //判断点是否在线段上 128 bool OnSegment(Point P, Point a1, Point a2) 129 { 130 Vector v1 = a1 - P, v2 = a2 - P; 131 return dcmp(Cross(v1, v2)) == 0 && dcmp(Dot(v1, v2)) < 0; 132 } 133 134 //求多边形面积 135 double PolygonArea(Point* P, int n) 136 { 137 double ans = 0.0; 138 for(int i = 1; i < n - 1; ++i) 139 ans += Cross(P[i]-P[0], P[i+1]-P[0]); 140 return ans/2; 141 } 142 143 /**********************圆的相关计算**********************/ 144 145 const double PI = acos(-1.0); 146 struct Line 147 {//有向直线 148 Point p; 149 Vector v; 150 double ang; 151 Line() { } 152 Line(Point p, Vector v): p(p), v(v) { ang = atan2(v.y, v.x); } 153 Point point(double t) 154 { 155 return p + v*t; 156 } 157 bool operator < (const Line& L) const 158 { 159 return ang < L.ang; 160 } 161 }; 162 163 struct Circle 164 { 165 Point c; //圆心 166 long double r; //半径 167 // Circle(Point c, double r):c(c), r(r) {} 168 Point point(double a) 169 {//求对应圆心角的点 170 return Point(c.x + r*cos(a), c.y + r*sin(a)); 171 } 172 }; 173 174 175 long double sqr(long double x){return x*x;} 176 177 long double Dis(Point a,Point b){ 178 long double l = sqr(a.x-b.x); 179 long double r = sqr(a.y-b.y); 180 return sqrt(sqr(a.x-b.x) + sqr(a.y-b.y)); 181 } 182 183 long double Intersection_area(Circle a,Circle b){ 184 long double dis=Dis(a.c,b.c); 185 if(a.r==0||b.r==0||dis>=a.r+b.r)return 0; 186 else if(dis<=fabs(a.r-b.r))return PI*sqr(min(a.r,b.r)); 187 else{ 188 long double angA = 2*acos( (sqr(a.r)+sqr(dis)-sqr(b.r))/(2*a.r*dis) ); 189 long double angB = 2*acos( (sqr(b.r)+sqr(dis)-sqr(a.r))/(2*b.r*dis) ); 190 long double areaA = sqr(a.r)*(angA-sin(angA))/2; 191 long double areaB = sqr(b.r)*(angB-sin(angB))/2; 192 // printf("angA = %llf angB = %llf areaA = %lf areaB = %lf\n",angA,angB,areaA,areaB); 193 return areaA+areaB; 194 } 195 } 196 197 Circle a,b; 198 199 int main(){ 200 cin >> a.c.x >> a.c.y >> a.r; 201 cin >> b.c.x >> b.c.y >> b.r; 202 long double ans = Intersection_area(a,b); 203 cout<< setprecision(25) << ans; 204 //printf("%.12llf\n",ans); 205 return 0; 206 }