视频教程-面向对象C#初级入门精讲(6)WinForm基础-C#

扫码下载「CSDN程序员学院APP」,1000+技术好课免费看

APP订阅课程,领取优惠,最少立减5元 ↓↓↓

订阅后:请点击此处观看视频课程

 

视频教程-面向对象C#初级入门精讲(6)WinForm基础-C#

学习有效期:永久观看

学习时长:265分钟

学习计划:5天

难度:

 

口碑讲师带队学习,让你的问题不过夜」

讲师姓名:徐照兴

高校教师 / 培训机构讲师

讲师介绍:徐照兴,教研室主任,硕士,副教授,专业建设委员会主任,微软Office认证讲师级,南昌科协常委,江西省职业技能鉴定考评员,获软著20余项、实用新型5项。研究领域智能信息系统开发、计算机应用教学。系统讲授《数据库》、《C#程序设计》、《ASP.NET》等课程。出版《Visual Basic2008应用程序开发实例精讲》等教材8部,拥有15年的高校教学与培训经验,对教学有独特的认识与见解。

☛点击立即跟老师学习☚

 

「你将学到什么?」

欢迎加入QQ群538724338咨询提问 【课程特色】 1、课程设计循序渐进、讲解细致、通俗易懂、非常适合自主学习 2、教学过程实例丰富、强调技术关键点、并且分析透彻 3、物美价廉:本着知识共享、帮助更多有需求者原则,毫无保留,不另外设置VIP课程。 此外,提供源代码+配套练习+答疑+上课日志。

 

「课程学习目录」

1.WinForm项目的文件结构
2.控件的常用属性与事件
3.第一个WinForm应用程序——求爱必成
4.Button、TextBox、Label、MessageBox
5.Button、TextBox、Label、MessageBox相关知识完善
6.事件参数object sender, EventArgs e的理解
7.控制文本框中输入字符只能为数字和点等应用
8.CheckBox复选框、RadioButton单选按钮
9.ListBox列表框
10.ComboBox下拉列表框
11.GroupBox、TreeView控件
12.Timer控件
13.ProgressBar控件
14.PictureBox控件和Stopwatch类
15.主菜单和上下文菜单
16.工具栏和状态栏
17.实现托盘NotifyIcon控件
18.其他控件、课程总结

 

7项超值权益,保障学习质量」

  • 大咖讲解

技术专家系统讲解传授编程思路与实战。

  • 答疑服务

专属社群随时沟通与讲师答疑,扫清学习障碍,自学编程不再难。

  • 课程资料+课件

超实用资料,覆盖核心知识,关键编程技能,方便练习巩固。(部分讲师考虑到版权问题,暂未上传附件,敬请谅解)

  • 常用开发实战

企业常见开发实战案例,带你掌握Python在工作中的不同运用场景。

  • 大牛技术大会视频

2019Python开发者大会视频免费观看,送你一个近距离感受互联网大佬的机会。

  • APP+PC随时随地学习

满足不同场景,开发编程语言系统学习需求,不受空间、地域限制。

 

「什么样的技术人适合学习?」

  • 想进入互联网技术行业,但是面对多门编程语言不知如何选择,0基础的你
  • 掌握开发、编程技术单一、冷门,迫切希望能够转型的你
  • 想进入大厂,但是编程经验不够丰富,没有竞争力,程序员找工作难。

 

「悉心打造精品好课,5天学到大牛3年项目经验」

【完善的技术体系】

技术成长循序渐进,帮助用户轻松掌握

掌握C#知识,扎实编码能力

【清晰的课程脉络】

浓缩大牛多年经验,全方位构建出系统化的技术知识脉络,同时注重实战操作。

【仿佛在大厂实习般的课程设计】

课程内容全面提升技术能力,系统学习大厂技术方法论,可复用在日后工作中。

 

「你可以收获什么?」

1、掌握WinForm项目的文件结构2、掌握WinForm常用控件的使用,包括Button、TextBox、Label、MessageBox、CheckBox、RadioButton、ListBox、ComboBox、TreeView、Timer、主菜单、上下文菜单、工具栏和状态栏、托盘NotifyIcon等3、理解事件参数object sender, EventArgs e

 

### 机器学习分类算法概述 机器学习作为一门涉及多个学科交叉的新兴技术,涵盖了概率论、统计学、计算机科学等领域的内容[^2]。在这一领域内,分类算法占据着重要地位,用于解决监督学习中的诸多问题。 #### 常见分类算法及其特性 1. **逻辑回归 (Logistic Regression)** 尽管名字中有“回归”,但实际上这是一种广泛应用于二元分类任务的经典线性模型。该方法基于输入特征预测事件发生的可能性,并将其转换成离散类别标签。由于简单易懂且解释性强,在金融风险评估等方面应用颇广[^4]。 2. **支持向量机 (Support Vector Machine, SVM)** 支持向量机旨在找到一个超平面来最大化不同类别之间的间隔距离,以此达到最佳分离效果。SVM不仅适用于线性可分的数据集,还可以借助核函数处理复杂的非线性关系,因此被广泛应用在文本识别等多个场景之中。 3. **决策树 (Decision Tree)** 决策树是一种直观而强大的工具,它模仿类思考过程构建一系列条件判断节点形成一棵或多棵树结构来进行分类决策。这种模型易于理解和可视化展示,但在某些情况下容易过拟合训练样本而导致泛化能力下降。 4. **随机森林 (Random Forests)** 随机森林是由大量独立生长的小型决策树组成的集成学习器,通过对单棵树木的结果取平均值或投票表决的方式得出最终结论。这种方法有效提高了单一决策树的稳定性和准确性,成为许多实际项目首选方案之一。 5. **K-近邻算法 (K-Nearest Neighbors, KNN)** KNN属于懒惰学习(lazy learning),即仅当有新实例到来时才开始工作。具体来说就是根据给定测试点周围最接近它的k个已知类别标记对象所占比例决定归属哪一类。此法无需事先建立复杂模型,但随着数据规模增大效率会显著降低[^5]。 6. **朴素贝叶斯 (Naive Bayes Classifier)** 利用贝叶斯定理并假设各个属性之间相互独立的前提下计算先验概率分布情况下的最大似然估计值完成分类操作。尽管现实中很难满足完全独立性的前提条件,然而朴素贝叶斯仍然表现出良好的性能特别是在自然语言处理方面有着不错的表现。 7. **神经网络 (Artificial Neural Networks, ANN)** 受生物神经系统启发而来的人工智能模拟物——工神经网络由大量的连接单元组成并通过调整权重参数不断优化输出结果直至收敛于全局最小误差状态。近年来深度学习框架使得ANN得以迅猛发展并在图像识别等领域取得突破性进展。 ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score # 加载鸢尾花数据集 data = load_iris() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.3) # 数据标准化预处理 scaler = StandardScaler().fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) # 使用KNN进行分类 clf = KNeighborsClassifier(n_neighbors=3).fit(X_train_scaled, y_train) y_pred = clf.predict(X_test_scaled) print(f'Accuracy: {accuracy_score(y_test, y_pred):.2f}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值