「LibreOJ NOI Round #2」单枪匹马

题目

通过这道题成功发现我不会矩乘

答案是一个连分数,看起来不像是一般的数据结构能做的样子,设\(x_{l,r},y_{l,r}\)分别表示\([l,r]\)询问的分子和分母

于是有

\[\frac{x_{l,r}}{y_{l,r}}=a_{l}+\frac{y_{l+1,r}}{x_{l+1,r}}=\frac{y_{l+1,r}+a_l\times x_{l+1,r}}{x_{l+1,r}}\]

这么鬼畜的东西就应该写成矩阵的形式

于是

\[ \begin{bmatrix} a_l& 1\\ 1&0 \end{bmatrix}\times \begin{bmatrix} x_{l+1,r}\\ y_{l+1,r} \end{bmatrix}=\begin{bmatrix} y_{l+1,r}+a_l\times x_{l+1,r}\\ x_{l+1,r} \end{bmatrix}= \begin{bmatrix} x_{l,r}\\ y_{l,r} \end{bmatrix} \]

这是一个\(2\times 2\)的矩阵乘一个\(2\times 1\)的向量,所以必须是矩阵在前去乘向量其实我之前一直把向量写前面

于是对于\(l,r\)这样的一组询问我们要求的就是\(\begin{bmatrix} a_r\\ 1 \end{bmatrix}\)这样一个向量,去乘\(r-1\)\(l\)这些矩阵,而且必须是从\(r-1\)乘到\(l\),由于乘完一个矩阵得到的还是一个向量,所以向量还是放在后面,于是根据结合律前面就是从\(l\)乘到\(r-1\)

就是

\[ \begin{bmatrix} a_l& 1\\ 1&0 \end{bmatrix}\times \begin{bmatrix} a_{l+1}& 1\\ 1&0 \end{bmatrix}\times \begin{bmatrix} a_{l+2}& 1\\ 1&0 \end{bmatrix}\times ...\times \begin{bmatrix} a_{r-1}& 1\\ 1&0 \end{bmatrix}\times \begin{bmatrix} a_r\\ 1 \end{bmatrix} \]

于是我们需要查询一个区间内矩阵的乘积,数据范围\(10^6\),看起来不太好用带\(\log\)的东西维护,于是考虑强行求逆

\(2\times 2\)的逆矩阵手推一下就推出来了,就是\(\begin{bmatrix} 0& 1\\ 1&-a_{l} \end{bmatrix}\),于是我们再维护一个逆矩阵的前缀积就可以快速查询一个区间了

但是逆矩阵的前缀积需要维护从\(i\)乘到\(1\)的积,矩阵的前缀积需要维护从\(1\)\(i\)的积,查询的时候也是那逆矩阵的前缀积乘上矩阵前缀积,这样前面才能两两消掉

代码

#include<bits/stdc++.h>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read() {
    char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
    while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=1e6+5;
const int mod=998244353;
struct mat{int a[2][2];};
inline int qm(int x) {return x>=mod?x-mod:x;}
inline mat operator*(mat a,mat b) {
    mat c;
    c.a[0][0]=qm(1ll*a.a[0][0]*b.a[0][0]%mod+1ll*a.a[0][1]*b.a[1][0]%mod);
        c.a[0][1]=qm(1ll*a.a[0][0]*b.a[0][1]%mod+1ll*a.a[0][1]*b.a[1][1]%mod);
        c.a[1][0]=qm(1ll*a.a[1][0]*b.a[0][0]%mod+1ll*a.a[1][1]*b.a[1][0]%mod);
        c.a[1][1]=qm(1ll*a.a[1][0]*b.a[0][1]%mod+1ll*a.a[1][1]*b.a[1][1]%mod);
        return c;
} 
inline void out(mat c) {
    printf("%d %d\n",c.a[0][0],c.a[0][1]);
    printf("%d %d\n",c.a[1][0],c.a[1][1]);
    puts("");
}
mat pre[maxn],inv[maxn];
int n,m,type,a[maxn];
int main() {
    n=read(),m=read(),type=read();
    pre[0].a[0][0]=pre[0].a[1][1]=inv[0].a[0][0]=inv[0].a[1][1]=1;
    for(re int i=1;i<=n;i++) pre[i].a[0][1]=pre[i].a[1][0]=1;
    for(re int i=1;i<=n;i++) inv[i].a[0][1]=inv[i].a[1][0]=1;
    for(re int i=1;i<=n;i++) pre[i].a[0][0]=a[i]=read(),inv[i].a[1][1]=qm(mod-a[i]);
    for(re int i=1;i<=n;i++) pre[i]=pre[i-1]*pre[i],inv[i]=inv[i]*inv[i-1];
    int lstx=0,lsty=0,op,x,l,r;
    while(m--) {
        op=read();
        if(op==1) {
            x=read();
            if(type) x^=(lstx^lsty);a[++n]=x;
            pre[n].a[0][1]=pre[n].a[1][0]=inv[n].a[0][1]=inv[n].a[1][0]=1;
            pre[n].a[0][0]=x,inv[n].a[1][1]=qm(mod-x);
            pre[n]=pre[n-1]*pre[n],inv[n]=inv[n]*inv[n-1];
        }
        if(op==2) {
            l=read(),r=read();
            if(type) l^=(lstx^lsty),r^=(lstx^lsty);
            if(l==r) lstx=a[l],lsty=1;
            else {
                mat c=inv[l-1]*pre[r-1];
                lstx=qm(1ll*a[r]*c.a[0][0]%mod+c.a[0][1]);
                lsty=qm(1ll*a[r]*c.a[1][0]%mod+c.a[1][1]);
            }
            printf("%d %d\n",lstx,lsty);
        }
    }
    return 0;
}

转载于:https://www.cnblogs.com/asuldb/p/11542312.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值