2017-2018-2偏微分方程复习题解析8

Problem: (1) Narrate the resonance theorem. (2) Let $X$ be a Banach space, and denote by $C_w([0,T];X)$ be all the maps $$\bex \ba{cccc} u:&[0,T]&\to& X\\ &t&\mapsto &u(t) \ea \eex$$ such that for any functional $\phi\in X'$, the function $[0,T]\ni t\mapsto \sef{\phi,u(t)}$ is continuous. Utilize (1) to show $C_w([0,T];X)\subset L^\infty([0,T];X)$.

Proof: (1) The resonance theorem reads as follows. Let $X$ be a Banach space, $Y$ be a normed linear space. Suppose that $\sed{A_\lm}_{\lm\in \vLm}$ is a family of bounded linear map from $X$ to $Y$, and satisfies $$\bex \sup_{\lm\in \vLm} \sen{A_\lm x}<\infty,\quad\forall\ x\in X. \eex$$ Then there exists a positive constant $M$ such that for any $\lm\in \vLm$, $\sen{A_\lm}\leq M$.

(2) As is well-known, $X$ can be viewed as a bounded linear functional on $X'$; that is, $X\subset X''$. Let $u\in C_w([0,T];X)$. We will use (1) to show $u\in L^\infty(0,T;X)$. Indeed, for $\forall\ \phi\in X'$, $\sef{\phi,u(t)}$ is a continuous function on $[0,T]$, and thus is bounded, i.e., $$\bex \sup_{t\in [0,T]}|\sef{\phi,u(t)}|<\infty,\quad\forall\ \phi\in X'. \eex$$ Consequently, $\sed{u(t)}_{t\in [0,T]}$ viewed as a family of bounded linear functional on $X'$, satisfies the hypothesis of (1), and hence there exists an $M>0$ such that $$\bex \sup_{t\in [0,T]}\sen{u(t)}_{X} =\sup_{t\in [0,T]}\sen{u(t)}_{X''} \leq M. \eex$$

转载于:https://www.cnblogs.com/zhangzujin/p/9032191.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值