设R={r1,r2,r3,.....rn}要进行全排列的n个元素,集合X中元素的全排列记为perm(X),则(ri)perm(X)表示在全排列perm(X)的每一个排列前加上前缀ri得到的排列。R的全排列定义可归纳定义如下:
当n=1时,perm(R) = (r),其中r为集合R中唯一元素
当n>1时,perm(R)由(r1)perm(R1)、(r2)perm(R2).........构成
因此可以设计全排列的递归算法;
//产生元素k—m的全排列,作为k-1个元素的后缀 void Perm(int list[], int k, int m){ //构成一次全排列,输出结果 if( k == m ){ for( int i = 0; i < m; i++ ) cout<<list[i]<<" "; cout<<endl; } else{ //在数组list中,产生元素k—m的全排列 for( int j = k; j <= m; j++){ swap(list[k],list[j]); Perm(list,k+1,m); swap(list[k],list[j]); } } }
递归实现对排列1,2,3,4进行全排列:
#include<iostream> #include<algorithm> //sort(),swap()函数头文件 using namespace std; void Perm(int a[], int k, int m){ if( k == m ){ for(int i = 0; i <= m; i++) cout<<a[i]<<" "; cout<<endl; } else{ for(int j = k; j <= m; j++){ swap(a[k],a[j]); Perm(a,k+1,m); swap(a[k],a[j]); } } } int main(){ int a[4] = {1,2,3,4}; //对数组中的1,2,3,4进行全排列 Perm(a,0,3); return 0; }
用C++STL库中的next_permutation(start,end),实现对集合的全排列。
next_permutation(start,end),和prev_permutation(start,end)。这两个函数作用是一样的,区别就在于前者求的是当前排列的下一个排列,后一个求的是当前排列的上一个排列。至于这里的“前一个”和“后一个”,我们可以把它理解为序列的字典序的前后,严格来讲,就是对于当前序列pn,他的下一个序列pn+1满足:不存在另外的序列pm,使pn<pm<pn+1.
对于next_permutation函数,其函数原型为:
#include <algorithm>
bool next_permutation(iterator start,iterator end)
当当前序列不存在下一个排列时,函数返回false,否则返回true
#include<iostream> #include<algorithm> using namespace std; int main(){ int a[4] = {1,2,3,4}; do { cout<<a[0]<<" "<<a[1]<<" "<<a[2]<<" "<<a[3]<<" "<<endl; }while(next_permutation(a,a+4)); return 0; }
另外,需要强调的是,next_permutation()在使用前需要对欲排列数组按升序排序。prev_permutation(start,end)在使用前需要对欲排列数组按降序排序