集合全排列
设计一个递归算法生成n个元素{r1,r2,…,rn}的全排列(n!种)。
设R={r1,r2,…,rn}是要进行排列的n个元素,
Ri=R-{ri}。
集合X中元素的全排列记为perm(X)。
(ri)perm(X)表示在全排列perm(X)的每一个排列前加上前缀得到的排列。
R的全排列可归纳定义如下:
当n=1时,
perm®=®,其中r是集合R中唯一的元素;
当n>1时,perm®由
(r1) perm(R1)
(r2) perm(R2)
…
(rn) perm(Rn)构成。
#include<iostream>
#include<algorithm>
using namespace std;
void Perm(int list[], int k, int m)
{
if (k == m)
{
for (int i = 0; i <= m; i++)
cout << list[i]<<" ";
cout << endl;
}
else {
for (int j = k; j <= m; j++)
{
swap(list[k], list[j]);
Perm(list, k + 1, m);
swap(list[k], list[j]);
}
}
}
int main()
{
int a[4] = { 1,2,3,4 };
Perm(a, 0, 3);
return 0;
}