题目描述
输入
输出
样例输入
5 4
1 2
1 3
3 4
3 5
1 4
2 4
1 2
2 5
样例输出
3
1
1
2
数据范围
样例解释
解法
可推知原树可以转换为一个序列,即优先序列:
一个01序列,当要往其中加入元素时,给第一个0加1即可。
操作1
等价于所谓优先序列加入元素。
实现:
二分第一个0的位置index;
使用数据结构得出[1,index]的和sum,如果index−sum>0,则index合法。
操作2
利用倍增得出最近的连续的有值祖先v,给v-1即可。
时间复杂度为O(nlogn2)。
代码
#include<iostream>
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
#define ll long long
#define ln(x,y) int(log(x)/log(y))
#define sqr(x) ((x)*(x))
using namespace std;
const char* fin="aP3.in";
const char* fout="aP3.out";
const int inf=0x7fffffff;
const int maxn=100007,maxm=maxn*2,maxk=20;
int n,m,i,j,k,tot,ans;
int fi[maxm],la[maxm],ne[maxm];
int a[maxn],de[maxn],fa[maxn][maxk];
int b[maxn],c[maxn],dfn[maxn],st[maxn],en[maxn];
int ta[maxn];
void change(int v,int v1){
for (;v<=n;v+=v&-v) ta[v]+=v1;
}
int presum(int v){
int v1=0;
for (;v;v-=v&-v) v1+=ta[v];
return v1;
}
int getsum(int l,int r){
return presum(r)-presum(l-1);
}
void add_line(int a,int b){
tot++;
ne[tot]=fi[a];
la[tot]=b;
fi[a]=tot;
}
void build(int v,int from){
int i,j,k;
fa[v][0]=from;
de[v]=de[from]+1;
for (i=1,j=ln(de[v],2);i<=j;i++){
k=fa[v][i-1];
fa[v][i]=fa[k][i-1];
}
st[v]=b[0];
for (k=fi[v];k;k=ne[k])
if (la[k]!=from) b[++b[0]]=la[k];
en[v]=b[0];
if (en[v]-st[v]) sort(b+st[v]+1,b+en[v]+1);
for (i=st[v]+1;i<=en[v];i++) build(b[i],v);
c[++c[0]]=v;
dfn[v]=c[0];
}
int add(){
int l=1,r=n,mid;
while (l<r){
mid=(l+r)/2;
if (mid-presum(mid)) r=mid;
else l=mid+1;
}
a[c[l]]=1;
change(l,1);
return c[l];
}
int del(int v){
int i,j,k=v;
if (a[k]==0) return 0;
for (i=ln(de[v],2);i>=0;i--){
if (a[fa[k][i]]) k=fa[k][i];
}
if (a[fa[k][0]]) k=fa[k][0];
a[k]=0;
change(dfn[k],-1);
return de[v]-de[k];
}
int main(){
scanf("%d%d",&n,&m);
for (i=1;i<n;i++){
scanf("%d%d",&j,&k);
add_line(j,k);
add_line(k,j);
}
build(1,0);
for (i=1;i<=m;i++){
scanf("%d%d",&j,&k);
if (j==1){
for (;k;k--) ans=add();
}else{
ans=del(k);
}
printf("%d\n",ans);
}
return 0;
}