BZOJ2924 [Poi1998]Flat broken lines 【Dilworth定理 + 树状数组】

题目链接

BZOJ2924

题解

题面有误。。是\(45°\)

如果两个点间连线与\(x\)轴夹角在\(45°\)以内,那么它们之间连边
求最小路径覆盖 = 最长反链
由于\(45°\)比较难搞,我们利用复数翻转一下,逆时针旋转\(45°\)
这样就求一条从左上到右下的最长链
我们将所有点按\(x\)排序,令\(f[i]\)表示\(i\)结尾的最长链
那么
\[f[i] = max\{f[j] + 1\} \quad [j < i \; y_j > y_i]\]
离散化一下用树状数组优化

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define lbt(x) (x & -x)
using namespace std;
const int maxn = 30005,maxm = 100005,INF = 1000000000;
inline int read(){
    int out = 0,flag = 1; char c = getchar();
    while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
    while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    return out * flag;
}
struct point{
    double x,y; int d;
}p[maxn];
inline bool operator <(const point& a,const point& b){
    return a.x == b.x ? a.d < b.d : a.x < b.x;
}
int n,tot;
double b[maxn];
inline int getn(double x){return lower_bound(b + 1,b + 1 + tot,x) - b;}
int s[maxn],f[maxn];
void modify(int u,int v){while (u) s[u] = max(s[u],v),u -= lbt(u);}
int query(int u){int re = 0; while (u <= n) re = max(re,s[u]),u += lbt(u); return re;}
int main(){
    n = read(); double x,y,s2 = sqrt(2) / 2.0;
    REP(i,n){
        x = read(); y = read();
        p[i] = (point){s2 * (x - y),s2 * (x + y)};
        b[i] = p[i].y;
    }
    sort(b + 1,b + 1 + n); tot = 1;
    for (int i = 2; i <= n; i++) if (b[i] != b[tot]) b[++tot] = b[i];
    for (int i = 1; i <= n; i++) p[i].d = getn(p[i].y);
    sort(p + 1,p + 1 + n); int ans = 0;
    for (int i = 1; i <= n; i++){
        f[i] = query(p[i].d + 1) + 1;
        modify(p[i].d,f[i]);
        ans = max(ans,f[i]);
    }
    printf("%d\n",ans);
    return 0;
}

转载于:https://www.cnblogs.com/Mychael/p/9109971.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值