[学习笔记] 关于 LIS/LDS 的一些奇奇怪怪的东西~

推销我的博客园~

球球大家了来看看我的博客园吧,阅读量 0 0 0 是人干事?

最基础的方法

有用的信息无非是 “权值” 和 “长度”。于是可以固定权值,求最长长度(树状数组);或者固定长度 j j j,求最小权值 g j g_j gj

方案数?

延续上文的方法:可以用树状数组维护最值时同时维护方案数;或者,将 g g g 开成一个 vector \text{vector} vector,放置所有 LIS \text{LIS} LIS j j j 的数字及其方案数,显然这些数字是递减的。设位置 i i i 的方案数为 f i f_i fi,它的 LIS \text{LIS} LIS p p p,显然有如下转移:

KaTeX parse error: Undefined control sequence: \and at position 23: …um_{j\in g(p-1)\̲a̲n̲d̲ ̲a_j<a_i} f_j

因为存储了历史值,所以显然不是所有属于 g ( p − 1 ) g(p-1) g(p1) 的数字都能转移到 i i i。所以需要做一个前缀和 + + + 二分。

Dilworth \text{Dilworth} Dilworth 定理

不下降子序列最小个数 = = = LIS \text{LIS} LIS 的长度。

树上 LIS \text{LIS} LIS

例 1. BZOJ  \text{BZOJ } BZOJ 大根堆

还是和 基础方法 一样:对于固定权值,此时发现儿子之间是互不影响的,于是可以使用线段树合并;对于固定长度,定长的数组无法处理,所以可以开一个 multiset \text{multiset} multiset

例 2. CF490F Treeland Tour \text{CF490F Treeland Tour} CF490F Treeland Tour

对于固定权值,用线段树分别维护 LIS \text{LIS} LIS LDS \text{LDS} LDS。具体合并两棵线段树时,可以以 mid \text{mid} mid 为界进行 LIS \text{LIS} LIS LDS \text{LDS} LDS 的合并。

极长 LIS \text{LIS} LIS

例 1. BZOJ - 2957  \text{BZOJ - 2957 } BZOJ - 2957 楼房重建

将斜率作为权值,题目要求的就是 能选则选 的极长 LIS \text{LIS} LIS

考虑用线段树维护,节点 [ l , r ] [l,r] [l,r] 维护区间最大斜率 k k k l l l 开始 的极长 LIS \text{LIS} LIS,令其为 L L L。定义 calc ( o , k ) \textbf{calc}(o,k) calc(o,k) 为区间 o o o 中,且起点大于 k k k 的极长 LIS \text{LIS} LIS

那么更新节点 o o o 的答案时,就只用左儿子的答案加上 calc ( rson , k lson ) \textbf{calc}(\text{rson},k_{\text{lson}}) calc(rson,klson) 即可。

关于 calc ( ) \textbf{calc}() calc() 的内部实现,当左儿子的最大斜率不大于 k k k 时直接递归右儿子;反之递归左儿子,加上右半部分已经算好的值(因为左半部分的斜率不会变化)。注意右半部分算好的值不是 L rson L_{\text{rson}} Lrson,这个没有考虑左半部分的斜率。

时间复杂度 O ( n log ⁡ 2 n ) \mathcal O(n\log^2 n) O(nlog2n)

#include <cstdio>
#define print(x,y) write(x),putchar(y)

template <class T>
inline T read(const T sample) {
	T x=0; char s; bool f=0;
	while((s=getchar())>'9' or s<'0')
		f |= (s=='-');
	while(s>='0' and s<='9')
		x = (x<<1)+(x<<3)+(s^48),
		s = getchar();
	return f?-x:x;
}

template <class T>
inline void write(T x) {
    static int writ[40],w_tp=0;
    if(x<0) putchar('-'),x=-x;
    do writ[++w_tp]=(x-x/10*10),x/=10; while(x);
    while(putchar(writ[w_tp--]^48),w_tp);
}

#include <iostream>
using namespace std;

const int maxn = 1e5+5;

int n,m;
struct node {
    double k; int ans;
} t[maxn<<2];

int calc(int o,int l,int r,const double k) {
    if(l==r) return t[o].k>k;
    int mid=l+r>>1;
    if(t[o<<1].k<=k) 
        return calc(o<<1|1,mid+1,r,k);
    return calc(o<<1,l,mid,k)+t[o].ans-t[o<<1].ans;
}

void ins(int o,int l,int r,int p,const double k) {
    if(l==r) return t[o].k=k,t[o].ans=1,void();
    int mid=l+r>>1;
    if(p<=mid) ins(o<<1,l,mid,p,k);
    else ins(o<<1|1,mid+1,r,p,k);
    t[o].k = max(t[o<<1].k,t[o<<1|1].k);
    t[o].ans = t[o<<1].ans+calc(o<<1|1,mid+1,r,t[o<<1].k);
}

int main() {
    n=read(9),m=read(9);
    for(int i=1;i<=m;++i) {
        int x=read(9),y=read(9);
        ins(1,1,n,x,1.0*y/x);
        print(t[1].ans,'\n');
    }
    return 0;
}

例 2. Nowcoder - 7615D \text{Nowcoder - 7615D} Nowcoder - 7615D 牛半仙的妹子序列

**题目大意:**给定一个长度为 n n n 的排列,求出包含极长上升子序列的个数。 n ≤ 2 ⋅ 1 0 5 n\le 2\cdot 10^5 n2105

首先想到 d p \mathtt{dp} dp,发现 j j j 能向 i i i 转移的条件是:只考虑 < a i <a_i <ai 的数, a j a_j aj 是区间 [ j , i ) [j,i) [j,i) 中最大的数,且 a j < a i a_j<a_i aj<ai

其实这可以转化为 cdq \text{cdq} cdq 分治,我们可以按照 a a a 来分治,转移时用前半部分贡献后半部分即可。

问题是后面的条件如何满足?事实上它可以转化为双向的条件:在 [ l , mid ] [l,\text{mid}] [l,mid] 之中求出第一个满足在 原序列 上下标大于 j j j 且值大于 a j a_j aj 的数字在原序列上的下标 r j r_j rj;在 ( mid , r ] (\text{mid},r] (mid,r] 之中求出第一个满足在 原序列 上下标小于 i i i 且值小于 a i a_i ai 的数字在原序列上的下标 l i l_i li

由于 r j , l i r_j,l_i rj,li 均满足权值在 ( a j , a i ) (a_j,a_i) (aj,ai) 之间,那么显然上面的条件可以这样被描述:

l i < j < i < r j l_i<j<i<r_j li<j<i<rj

这个问题就很简单了 —— 将 i i i 按照 l i l_i li 从大到小排序,依次在树状数组中添加 j j j d p \mathtt{dp} dp 值,拿 r i r_i ri 来查询即可。

时间复杂度 O ( n log ⁡ 2 n ) \mathcal O(n\log^2 n) O(nlog2n)


其实这道题目也可以转化为上一道例题:我们发现,对于每个 i i i,合法的 j j j 其实就是从 i i i 开始能选则选的单增序列(当然从左往右就是单减的)!转移时从小到大枚举权值,这样就能丢掉 最大值小于 a i a_i ai 的限制。维护时直接套板子, calc ( o , k ) \textbf{calc}(o,k) calc(o,k) 的含义就是大于 k k k 的方案数,所以需要维护最大值。时间复杂度仍然是 O ( n log ⁡ 2 n ) \mathcal O(n\log^2 n) O(nlog2n) 的。

看看代码吧:

#include <cstdio>
#define print(x,y) write(x),putchar(y)

template <class T>
inline T read(const T sample) {
	T x=0; char s; bool f=0;
	while((s=getchar())>'9' or s<'0')
		f |= (s=='-');
	while(s>='0' and s<='9')
		x = (x<<1)+(x<<3)+(s^48),
		s = getchar();
	return f?-x:x;
}

template <class T>
inline void write(T x) {
    static int writ[40],w_tp=0;
    if(x<0) putchar('-'),x=-x;
    do writ[++w_tp]=(x-x/10*10),x/=10; while(x);
    while(putchar(writ[w_tp--]^48),w_tp);
}

#include <iostream>
using namespace std;

const int maxn = 2e5+5;
const int mod = 998244353;

int n,pos[maxn],lim;
int a[maxn],dp[maxn];
struct node {
    int mx,lans;
} t[maxn<<2];

inline int inc(int x,int y) {
    return x+y>=mod?x+y-mod:x+y;
}

int calc(int o,int l,int r,int k) {
    if(l==r) return t[o].mx>k?dp[t[o].mx]:0;
    int mid=l+r>>1;
    if(t[o<<1|1].mx<=k) return calc(o<<1,l,mid,k);
    return inc(calc(o<<1|1,mid+1,r,k),t[o].lans);
}

int ask(int o,int l,int r,int L,int R) {
    if(l>=L && r<=R) {
        int v=lim; lim = max(lim,t[o].mx);
        return calc(o,l,r,v);
    }
    int mid=l+r>>1,ret=0;
    if(R>mid) ret=ask(o<<1|1,mid+1,r,L,R);
    if(L<=mid) ret=inc(ret,ask(o<<1,l,mid,L,R));
    return ret;
}

void ins(int o,int l,int r,int p,int k) {
    if(l==r) return t[o].mx=k,void();
    int mid=l+r>>1;
    if(p<=mid) ins(o<<1,l,mid,p,k);
    else ins(o<<1|1,mid+1,r,p,k);
    t[o].mx = max(t[o<<1].mx,t[o<<1|1].mx);
    t[o].lans = calc(o<<1,l,mid,t[o<<1|1].mx);
}

int main() {
    n=read(9);
    for(int i=1;i<=n;++i) 
		pos[a[i]=read(9)]=i;
    for(int i=1;i<=n;++i) {
        int wh = pos[i]; lim=0;
        dp[i] = ask(1,1,n,1,wh);
        if(!dp[i]) dp[i]=1;
        ins(1,1,n,wh,i);
    }
    int ans=0; lim=0;
    for(int i=n;i;--i)
    	if(lim<a[i]) {
    		ans = inc(ans,dp[a[i]]);
    		lim = a[i];
		}
	print(ans,'\n');
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值