神牛驾到!James B. Orlin 的 O(nm)最大流算法论文翻译!!

本文在此之后继续介绍了两个扩展改进算法(见“概述”)。

 

Orlin的算法不但需要与King et al.算法相结合,同时实现过程相当繁琐,需要使用传递闭包、动态树等高级算法,基本只具备理论价值。我翻译这篇论文,也是希望能与大家一起领略信息学前沿的风采,膜拜一下这位MIT大神级人物!!。

 

鉴于翻译较为仓促且本人水平有限,有诸多错误敬请指出。谢谢。

由于翻译时间所限,本文略去了原作者若干段证明过程。读者若需了解本文诸多定理、引理的证明过程,请见作者的官方网站http://jorlin.scripts.mit.edu/Max_flows_in_O%28nm%29_time.html。

 

此外,由于人人日志无法显示数学公式,所以本文采用图片的形式。需要PDF文件的同学欢迎留下邮箱。

也欢迎大家分享。

 

补充:

曾先后就读于上海交通大学、复旦大学、美国乔治亚理工大学(GIT)的余佳晋老师补充:

“之前听过Orlin做过这个的报告,印象是非常繁琐。另外CS Theory好像对这个结果没有很大的热情。原因我猜是因为这个结果虽然理论上不错,但一来很繁琐,二来没有新东西。另外这个结果也远不如Spielman和Teng还有两个人做的那个max flow的结果来的轰动。”

Spielman和Teng的最大流算法于2010年提出,时间复杂度为O((N+M)^(4/3)).

有兴趣的同学可以参见:

http://web.mit.edu/newsoffice/2010/max-flow-speedup-0927.html

以及原论文:

http://math.mit.edu/~kelner/Publications/Docs/maxFlow.pdf

转载于:https://www.cnblogs.com/AbandonZHANG/archive/2012/09/19/2694153.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值