Taylor Guo @ Shanghai - 2018.10.22 - 星期一
PyTorch 资源链接
- 图像分类
- VGG
- ResNet
- DenseNet
- MobileNetV2
- ResNeXt
- SqueezeNet
- ShuffleNet
- ShuffleNet V2
- 位姿估计
- CPM: Convolutional Pose Machines
- OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
- 物体检测
- SSD
- Faster R-CNN
- YoloV3
- FPN
- 语义分割
- DeepLabV3
- PSPNet
- DenseASPP
- 实例分割
- Mask R-CNN
PyTorchCV性能对比
物体检测
Model | Training data | Testing data | mAP | FPS |
---|---|---|---|---|
SSD-300 Origin | VOC07+12 trainval | VOC07 test | 0.772 | - |
SSD-300 Ours | VOC07+12 trainval | VOC07 test | 0.786 | - |
- Faster R-CNN:区域建议网路 【Faster R-CNN】
Model | Training data | Testing data | mAP | FPS |
---|---|---|---|---|
Faster R-CNN Origin | VOC07 trainval | VOC07 test | 0.699 | - |
Faster R-CNN Ours | VOC07 trainval | VOC07 test | 0.706 | - |
- YoloV3
PyTorchCV 使用
以OpenPose为例:
- 训练模型
python main.py --hypes hypes/pose/coco/op_coco_pose.json \
--base_lr 0.001 \
--phase train \
--gpu 0 1
- 微调模型
python main.py --hypes hypes/pose/coco/op_coco_pose.json \
--base_lr 0.001 \
--phase train \
--resume checkpoints/pose/coco/coco_open_pose_65000.pth \
--gpu 0 1
- 测试模型(test_img):
python main.py --hypes hypes/pose/coco/op_coco_pose.json \
--phase test \
--resume checkpoints/pose/coco/coco_open_pose_65000.pth \
--test_img val/samples/ski.jpg \
--gpu 0
- 测试模型(test_dir):
python main.py --hypes hypes/pose/coco/op_coco_pose.json \
--phase test \
--resume checkpoints/pose/coco/coco_open_pose_65000.pth \
--test_dir val/samples \
--gpu 0
PyTorchCV 结果实例