PyTorch深度学习计算机视觉框架

Taylor Guo @ Shanghai - 2018.10.22 - 星期一

 

PyTorch 资源链接

  • 图像分类
    • VGG
    • ResNet
    • DenseNet
    • MobileNetV2
    • ResNeXt
    • SqueezeNet
    • ShuffleNet
    • ShuffleNet V2
  • 位姿估计
    • CPM: Convolutional Pose Machines
    • OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
  • 物体检测
    • SSD 
    • Faster R-CNN
    • YoloV3
    • FPN
  • 语义分割
    • DeepLabV3
    • PSPNet
    • DenseASPP
  • 实例分割
    • Mask R-CNN

 

PyTorchCV性能对比

物体检测

ModelTraining dataTesting datamAPFPS
SSD-300 OriginVOC07+12 trainvalVOC07 test0.772-
SSD-300 OursVOC07+12 trainvalVOC07 test0.786-
ModelTraining dataTesting datamAPFPS
Faster R-CNN OriginVOC07 trainvalVOC07 test0.699-
Faster R-CNN OursVOC07 trainvalVOC07 test0.706-
  • YoloV3

 

PyTorchCV 使用

以OpenPose为例:

  • 训练模型
python main.py  --hypes hypes/pose/coco/op_coco_pose.json \
                --base_lr 0.001 \
                --phase train \
                --gpu 0 1
  • 微调模型
python main.py  --hypes hypes/pose/coco/op_coco_pose.json \
                --base_lr 0.001 \
                --phase train \
                --resume checkpoints/pose/coco/coco_open_pose_65000.pth \
                --gpu 0 1
  • 测试模型(test_img):
python main.py  --hypes hypes/pose/coco/op_coco_pose.json \
                --phase test \
                --resume checkpoints/pose/coco/coco_open_pose_65000.pth \
                --test_img val/samples/ski.jpg \
                --gpu 0
  • 测试模型(test_dir):
python main.py  --hypes hypes/pose/coco/op_coco_pose.json \
                --phase test \
                --resume checkpoints/pose/coco/coco_open_pose_65000.pth \
                --test_dir val/samples \
                --gpu 0

 

PyTorchCV 结果实例

VGG19-OpenPose 输出结果

VGG19-OpenPose 输出结果

 

转载于:https://www.cnblogs.com/taylorguo/p/9832462.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值