23种设计模式——组织编目(转)

本文介绍了23种设计模式,并根据其目的和范围进行了分类。设计模式被分为创建型、结构型和行为型三大类,并进一步细分为类模式和对象模式。文中详细解释了各类模式的特点及应用场景。

23种设计模式——组织编目

——摘自《设计模式:可复用面向对象软件的基础》

        设计模式在粒度和抽象层次上各不相同。由于存在众多的设计模式,我们希望用一种方式将它们组织起来。这一节将对设计模式进行分类以便于我们对各种相关的模式进行引用。分类有助于更快地学习目录中的模式,且对发现的模式也有指导作用,如下表所示。

 目的
创建型结构型行为型
范围    Factory Method    Adapter(类)    Interpreter
    Template Method
对象    Abstract Factory
    Builder
    Prototype
    Singleton
    Adapter(对象)
    Bridge
    Composite
    Decorator
    Facade
    Flyweight
    Proxy
    Chain of Responsibility
    Command
    Iterator
    Mediator
    Memento
    Observer
    State
    Strategy
    Visitor

    我们根据两条准则对模式进行分类。

    第一是目的准则,即模式是用来完成什么工作的。模式依据其目的可分为创建型(Creational)、结构型(Structural)、行为型(Behavioral)三种。创建型模式与对的创建有关;结构型模式处理类或对象的组合;行为型模式对类或对象怎样交互和怎样分配职责进行描述。

    第二是范围准则,指定模式主要是用于类还是用于对象。类模式处理类和子类之间的关系,这些关系通过继承建立,是静态的。在编译时刻便确定下来。对象模式处理对象间的关系,这些关系在运行时刻是可以变化的,更具动态性。从某种意义上来说,几乎所有模式都使用继承机制,所以“类模式”只指那些集中于处理类间关系的模式,而大部分模式都属于对象模式的范畴。

    创建型类模式将对象的部分创建工作延迟到子类,而创建型对象模式则将它延迟到另一个对象中。
    结构型类模式使用继承机制来组合类,而结构型对象模式则描述了对象的组装方式。
    行为型类模式使用继承描述算法和控制流,而行为型对象模式则描述一组对象怎样协作完成单个对象所无法完成的任务。

    还有其他组织模式的方式。有些模式经常会被绑定在一直民使用。
    有些模式是可替代的,有些模式尽管使用意图不同,但产生的设计结果是很相似的。

    还有一种方式是根据模式的“相关模式”部分所描述的它们怎样互相引用来组织设计模式。如下图所示。
    显然,存在着许多组织设计模式的方法。从多角度去思考有助于对它们的功能、差异和应用场合的更深入理解。

23DesignPattern.gif

转载于:https://www.cnblogs.com/lingxzg/archive/2007/08/01/838629.html

【源码免费下载链接】:https://renmaiwang.cn/s/6hcxp 在C语言中,链表是一种常见的数据结构,用于存储动态数据集合。在这个“基于C的简单链表合并2排序程序”中,我们需要处理两个已经排序的链表,a和b,每个链表的节点包含学号(假设为整型)和成绩(也假设为整型)。目标是将这两个链表合并成一个新的链表,并按照学号的升序排列。我们来了解一下链表的基本概念。链表不同于数组,它不连续存储数据,而是通过指针将各个节点连接起来。每个节点通常包含两部分:数据域(存储学号和成绩)和指针域(指向下一个节点)。要实现这个合并和排序的过程,我们可以遵循以下步骤:1. **定义链表节点结构体**: 创建一个结构体类型,如`Node`,包含学号(score_id)和成绩(grade)字段,以及一个指向下一个节点的指针(next)。```ctypedef struct Node { int score_id; int grade; struct Node* next;} Node;```2. **初始化链表**: 在程序开始时,创建a和b链表的头节点,并确保它们的初始状态为空。3. **读取链表数据**: 从输入文件(假设为11.8中的文件)中读取数据,根据学号和成绩创建新的节点,并将其添加到相应的链表a或b中。这一步可能需要使用`fscanf`函数从文件中读取数据,并使用`malloc`分配内存创建新节点。4. **合并链表**: 合并两个链表的关键在于找到合适的位置插入b链表的节点。从头节点开始遍历a链表,比较当前节点的学号与b链表头节点的学号。如果b链表的学号更小,就将b链表的头节点插入到a链表的当前节点后面,然后继续比较b链表的新头节点(原头节点的下一个节点)与a链表的当前节点。当b链表为空或所有节点都已插入a链表时,合并完成。5. **排序链表**: 由于我们合并的时候
【源码免费下载链接】:https://renmaiwang.cn/s/0gh4u :“bp神经网络实现的iris数据分类”在机器学习领域,BP(Backpropagation)神经网络是一种广泛应用的监督学习算法,它主要用于解决非线性分类和回归问题。本项目实现了利用BP神经网络对鸢尾花(Iris)数据集进行分类。鸢尾花数据集是UCI机器学习库中的经典数据集,包含了三种不同鸢尾花品种的多个特征,如花瓣长度、花瓣宽度、萼片长度和萼片宽度,总计150个样本。:“bp神经网络实现的iris数据分类,UCI上下载的iris数据,适当调整误差精度,分类正确率可达到99%”我们需要理解UCI机器学习库中的Iris数据集。这个数据集由生物学家Ronald Fisher在1936年收集,是用于多类分类的典型实例。它包含3种鸢尾花(Setosa, Versicolour, Virginica)的4个特征,每种花有50个样本。在使用BP神经网络进行分类时,我们通常会先对数据进行预处理,包括数据清洗、标准化或归一化,以确保输入层的数值在同一尺度上。BP神经网络的核心在于反向传播算法,它通过计算预测值与真实值之间的误差,并将误差从输出层向输入层逐层反向传播,调整权重以减小误差。在训练过程中,我们通常设置学习率、迭代次数以及停止训练的阈值,以达到最佳性能。在这个项目中,通过对误差精度的适当调整,使得网络能够在训练完成后对鸢尾花的分类准确率高达99%,这表明网络具有很好的泛化能力。【详细知识点】:1. **BP神经网络**:由输入层、隐藏层和输出层组成,通过梯度下降法和链式法则更新权重,以最小化损失函数。2. **鸢尾花数据集(Iris dataset)**:包含了150个样本,每个样本有4个特征和1个类别标签,常用于分类任务的基准测试。3. **特征工程**:预处理数据,可能包括缺失值处理、异常值检测
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值