欧几里得算法和扩展欧几里得算法

欧几里得算法和扩展欧几里得算法


欧几里得算法

说白了就是辗转相除算法
我们在求a和b的gcd的时候
首先我们会发现gcd(a,b)=gcd(ab,b) (a>=b)gcd(a,b)=gcd(a−b,b) (a>=b)
那么我们不停地迭代就发现gcd(a,b)=gcd(a mod b,b)gcd(a,b)=gcd(a mod b,b)
然后我们就可以不停地迭代下去
当小的数等于0的时候答案就是大的那个数
最后写出来就是

int gcd(int a,int b){
    if(!b)return a;
    return gcd(b,a%b);
}

扩展欧几里得

然后我们需要求的从gcd(x,y)gcd(x,y)变成了ax+by=cax+by=c
也就是不定方程求解
然后考虑一个不定方程
ax+by=cax+by=c有解的充要条件就是gcd(a,b)|cgcd(a,b)|c
即,我们想求出满足ax+by=gcd(a,b)ax+by=gcd(a,b)的解
然后惊讶的发现gcd(a,b)=gcd(b,a mod b)gcd(a,b)=gcd(b,a mod b)
然后我们用bba mod ba mod b代替aabb
发现gcd(a,b)=bx+(a mod b)ygcd(a,b)=bx+(a mod b)y
又因为a mod b=a(a/b)ba mod b=a−(a/b)∗b(这里是整除)
所以gcd(a,b)=bx+(a(a/b)b)ygcd(a,b)=bx+(a−(a/b)∗b)y
整理一下gcd(a,b)=ay+b(x(a/b)y)gcd(a,b)=ay+b(x−(a/b)∗y)
又惊讶地发现:
x>yx−>y
y>x(a/b)yy−>x−(a/b)∗y
然后就可以利用exgcd的过程进行求解了

void exgcd(int a,int b,int &x,int &y){
    if(!b)x=1,y=0;
    else{
        exgcd(b,a%b,y,x);
        y-=(a/b)*x;
    }
}

但是问题又来了
我们怎么求出最小的正整数解呢
首先我们还原一下式子,把x,yx,y同时乘上c/gcd(a,b)c/gcd(a,b)
又因为通解可以表示成:
x=x+bgcd(a,b)kx=x′+bgcd(a,b)∗k
y=yagcd(a,b)ky=y′−agcd(a,b)∗k
所以x的最小正整数解就是(x%bgcd(a,b)+bgcd(a,b))%bgcd(a,b)(x%bgcd(a,b)+bgcd(a,b))%bgcd(a,b)

转载于:https://www.cnblogs.com/dream-maker-yk/p/9676306.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值