欧几里得算法和扩展欧几里得算法
欧几里得算法
说白了就是辗转相除算法
我们在求a和b的gcd的时候
首先我们会发现gcd(a,b)=gcd(a−b,b) (a>=b)gcd(a,b)=gcd(a−b,b) (a>=b)
那么我们不停地迭代就发现gcd(a,b)=gcd(a mod b,b)gcd(a,b)=gcd(a mod b,b)
然后我们就可以不停地迭代下去
当小的数等于0的时候答案就是大的那个数
最后写出来就是
int gcd(int a,int b){
if(!b)return a;
return gcd(b,a%b);
}
扩展欧几里得
然后我们需要求的从gcd(x,y)gcd(x,y)变成了ax+by=cax+by=c
也就是不定方程求解
然后考虑一个不定方程
ax+by=cax+by=c有解的充要条件就是gcd(a,b)|cgcd(a,b)|c
即,我们想求出满足ax+by=gcd(a,b)ax+by=gcd(a,b)的解
然后惊讶的发现gcd(a,b)=gcd(b,a mod b)gcd(a,b)=gcd(b,a mod b)
然后我们用bb和a mod ba mod b代替aa和bb
发现gcd(a,b)=bx+(a mod b)ygcd(a,b)=bx+(a mod b)y
又因为a mod b=a−(a/b)∗ba mod b=a−(a/b)∗b(这里是整除)
所以gcd(a,b)=bx+(a−(a/b)∗b)ygcd(a,b)=bx+(a−(a/b)∗b)y
整理一下gcd(a,b)=ay+b(x−(a/b)∗y)gcd(a,b)=ay+b(x−(a/b)∗y)
又惊讶地发现:
x−>yx−>y
y−>x−(a/b)∗yy−>x−(a/b)∗y
然后就可以利用exgcd的过程进行求解了
void exgcd(int a,int b,int &x,int &y){
if(!b)x=1,y=0;
else{
exgcd(b,a%b,y,x);
y-=(a/b)*x;
}
}
但是问题又来了
我们怎么求出最小的正整数解呢
首先我们还原一下式子,把x,yx,y同时乘上c/gcd(a,b)c/gcd(a,b)
又因为通解可以表示成:
x=x′+bgcd(a,b)∗kx=x′+bgcd(a,b)∗k
y=y′−agcd(a,b)∗ky=y′−agcd(a,b)∗k
所以x的最小正整数解就是(x%bgcd(a,b)+bgcd(a,b))%bgcd(a,b)(x%bgcd(a,b)+bgcd(a,b))%bgcd(a,b)